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A NOTE ON KADIRI’S EXPLICIT ZERO FREE REGION

FOR RIEMANN ZETA FUNCTION

Woo-Jin Jang and Soun-Hi Kwon

Abstract. In 2005 Kadiri proved that the Riemann zeta function ζ(s)
does not vanish in the region

Re(s) ≥ 1−
1

R0 log |Im(s)|
, |Im(s)| ≥ 2

with R0 = 5.69693. In this paper we will show that R0 can be taken R0 =
5.68371 using Kadiri’s method together with Platt’s numerical verification
of Riemann Hypothesis.

1. Introduction

It is well known that the distribution of prime numbers is deeply related
with the zeros of the Riemann zeta function ζ(s). Let π(x) be the number of
primes up to x. Hadamard and de la Vallée Poussin proved the prime number
theorem which states that π(x) is asymptotic to Li(x) =

∫ x

2
dt

log t . In 1899, de

la Vallée Poussin proved that ζ(s) does not vanish in the region

Re(s) ≥ 1− 1

R0 log |Im(s)| , |Im(s)| ≥ 2

with R0 = 34.82. From this zero-free region for ζ(s) the error term π(x)−Li(x)
can be estimated:

π(x)− Li(x) = O

(
x exp

(
−
√

log x

R0

))
when x → ∞.

See [18] and Section 1 of [7]. The constant R0 has been improved by many
authors, particularly by Rosser [13, 14, 15], Schoenfeld [14, 15], Stechkin [16],
Ford [1, 2], and Kadiri [7]. Recently Kadiri improved significantly on R0.
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Theorem 1 (Kadiri [7]). ζ(s) does not vanish in the region

Re(s) ≥ 1− 1

R0 log |Im(s)| , |Im(s)| ≥ 2

with R0 = 5.69693.

The aim of this paper is to show that R0 can be slightly reduced to 5.68371.
In order to enlarge zero-free regions for ζ(s) Kadiri used Weil’s explicit formula
together with a generalization of Stechkin’s work. In [6] Heath-Brown used
Weil’s explicit formula to get better zero-free regions for Dirichlet L-functions.
Kadiri adapted Heath-Brown’s method for ζ(s). Moreover, Heath-Brown sug-
gested several test functions with which one can use Weil’s explicit formula.
Kadiri used one of those functions and Wedeniwski’s numerical verification of
the Riemann Hypothesis to prove Theorem 1. In this paper we will use Kadiri’s
method with different test functions together with Platt’s numerical verifica-
tion of the Riemann Hypothesis and obtain R0 = 5.68371. For the numerical
verification of the Riemann Hypothesis, see van de Lune, te Riele, and Winter
[10], Wedeniwski [19], Gourdon [3], Platt [11, 12], and Kadiri [7, 8].

The structure of this paper is as follows. In Section 2 we review briefly some
of well-known patterns for studying the zeros of ζ(s). In Section 3 we present
Kadiri’s method. In Section 4 we give our numerical results using various test
functions and trigonometric inequalities.

2. The logarithmic derivative of ζ(s) and the zeros of ζ(s)

To begin with we consider the logarithmic derivative of ζ(s)

−ζ′

ζ
(s) =

∑

n≥1

Λ(n)

ns
,

where Λ(n) is the von Mangoldt function. Using the functional equation for
ζ(s) and the Hadamard product formula we get

−Re
ζ′

ζ
(s) =

− log π

2
+

1

2
Re

Γ′

Γ

(
s

2
+ 1

)
+Re

(
1

s− 1

)
−

∑

ρ∈Z(ζ)

Re

(
1

s− ρ

)
,

where Z(ζ) denotes the set of non-trivial zeros of ζ(s). Let ρ0 = β0 + iγ0 be
some particular zero with |γ0| ≥ 2. Note that if Re(s) > 1, then Re 1

s−ρ > 0.

Discarding −∑
ρ∈Z(ζ)
ρ6=ρ0

Re 1
s−ρ < 0 we obtain

−Re
ζ′

ζ
(s) ≤ − log π

2
+

1

2
Re

Γ′

Γ

(
s

2
+ 1

)
+Re

(
1

s− 1

)
− Re

(
1

s− ρ0

)

for s with Re(s) > 1. Let P (v) =
∑K

k=0 ak cos(kv) ≥ 0 with ak ≥ 0 and let
s = σ + it. Then

K∑

k=0

ak

(
− Re

ζ′

ζ
(σ + ikt)

)
= Re

K∑

k=0

ak
∑

n≥1

Λ(n)

nσ+ikt
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=
K∑

k=0

ak
∑

n≥1

Λ(n)

nσ
cos(kt logn) ≥ 0.

Let us consider for example the classical inequality

P (v) = 3 + 4 cos v + cos(2v) = 2(1 + cos v)2 ≥ 0.

Suppose that σ > 1. We have

−ζ′

ζ
(σ) ≤ − logπ

2
+

1

2
Re

Γ′

Γ

(
σ

2
+ 1

)
+

1

σ − 1
− Re

(
1

σ − ρ0

)
,

−Re
ζ′

ζ
(σ+iγ0) ≤

− logπ

2
+
1

2
Re

Γ′

Γ

(
σ + iγ0

2
+1

)
+Re

(
1

σ + iγ0 − 1

)
− 1

σ − β0
,

and

−Re
ζ′

ζ
(σ + i2γ0) ≤

− logπ

2
+

1

2
Re

Γ′

Γ

(
σ + i2γ0

2
+ 1

)
+Re

(
1

σ + i2γ0 − 1

)

− Re

(
1

σ − β0 + iγ0

)
.

From

Re

(
− 3

ζ′

ζ
(σ)− 4

ζ′

ζ
(σ + iγ0)−

ζ′

ζ
(σ + i2γ0)

)
≥ 0

we get
4

σ − β0
≤ 3

σ − 1
+ c1 log |γ0|,

where c1 is some positive constant that can be estimated explicitly. If we choose
σ optimally, then we obtain an upper bound for β0. See Chapter III of [17],
Section 1 of [15], Section 4 of [6], and § 8 of [9].

In [16] Stechkin proved the following.

Stechkin’s Lemma. Let β ∈ [1/2, 1], y > 0, σ > 1 and let τ = (1 +√
1 + 4σ2)/2. Then

Re

[
1

σ − β + iy
+

1

σ − 1 + β + iy
− 1√

5

(
1

τ − β + iy
+

1

τ − 1 + β + iy

)]
≥ 0.

If ρ is a zero of ζ(s), then ρ̄ and 1 − ρ̄ are also zeros of ζ(s). In view of
Stechkin’s lemma we have

Re

[
1

σ + it− ρ
+

1

σ + it− 1 + ρ̄
− 1√

5

(
1

σ + δ + it− ρ
+

1

σ + δ + it− (1− ρ̄)

)]
≥ 0,

where δ = τ − σ. We consider

− Re
ζ′

ζ
(s) +

1√
5
Re

ζ′

ζ
(s+ δ)

=
− logπ

2

(
1− 1√

5

)
+

1

2

[
Re

Γ′

Γ

(
s

2
+ 1

)
− 1√

5
Re

Γ′

Γ

(
s+ δ

2
+ 1

)]
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+Re
1

s− 1
− 1√

5
Re

1

s+ δ − 1
− 1

2

∑

ρ∈Z(ζ)

Re

[
1

s− ρ
+

1

s− (1 − ρ̄)

− 1√
5

(
1

s+ δ − ρ
+

1

s+ δ − 1 + ρ̄

)]
.

One may discard the sum

∑

ρ∈Z(ζ)
ρ6=ρ0, 1−ρ̄0

Re

[
1

s− ρ
+

1

s− (1− ρ̄)
− 1√

5

(
1

s+ δ − ρ
+

1

s+ δ − 1 + ρ̄

)]
≥ 0

and get

− Re

(
ζ′

ζ
(s)− 1√

5
Re

ζ′

ζ
(s+ δ)

)

≤ − log π

2

(
1− 1√

5

)
+

1

2
Re

[
Γ′

Γ

(
s

2
+ 1

)
− 1√

5

Γ′

Γ

(
s+ δ

2
+ 1

)]

+Re

(
1

s− 1
− 1√

5

1

s+ δ − 1

)
− Re

[
1

s− ρ0
+

1

s− (1− ρ̄0)

− 1√
5

(
1

s+ δ − ρ0
+

1

s+ δ − (1− ρ̄0)

)]
.

Combining this bound and

K∑

k=0

akRe

(
1√
5

ζ′

ζ
(σ + δ + ikt)− ζ′

ζ
(σ + ikt)

)

=
∑

n≥1

Λ(n)

nσ
(1− 1/

√
5

nδ
)P (t logn) ≥ 0

one can obtain a zero free region for ζ(s). Note that using Stechkin’s lemma one
can reduce the constant 1

2 to 1
2

(
1− 1√

5

)
. This allows to get wider zero-free region

for ζ(s): in particular, Rosser and Schoenfeld obtained R0 = 9.645908801 in
[15]. For more detail see Stechkin [16], Rosser and Schoenfeld [15], and Graham
[4].

In [6] Heath-Brown established the explicit formula that relating the sum

∑

n

Λ(n)
χ(n)

ns
f

(
logn

log q

)

to a sum over zeros of Dirichlet L-function L(s, χ) associated with χ, where χ
is a primitive Dirichlet character modulo q > 1, and f(t) is a positive smooth
function satisfying certain conditions given in Section 5 of [6]. Note that Heath-
Brown gave several functions for f(t). Using this explicit formula Heath-Brown
improved zero-free regions for Dirichlet L-functions (see [6]). In 2005 Kadiri
generalized Stechkin’s work and used it together with Weil’s explicit formula
for ζ(s). We will describe Kadiri’s method in the next section.
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3. Kadiri’s method

In this section we will describe Kadiri’s method in brief. We will use the
same notations as [7].

Let f be a positive function with compact support that is in C2([0, d]).
Assume that

f(d) = f ′(0) = f ′(d) = f ′′(d) = 0.(1)

Let

F (z) =

∫ d

0

e−ztf(t)dt

be the Laplace transform of f . In Proposition 2.1 of [7] Kadiri proved the
following.

Proposition 1 (Weil’s explicit formula). Let f be a function as above and

s = σ + it a complex number. Then we have

Re

(∑

n≥1

Λ(n)

ns
f(logn)

)

= f(0)

(
− 1

2
log π +Re

1

2

Γ′

Γ

(
s

2
+ 1

))

+ReF (s− 1)−
∑

ρ∈Z(ζ)

ReF (s− ρ)

+ Re

(
1

2πi

∫ 1/2+i∞

1/2−i∞
Re

Γ′

Γ

(
z

2

)
F2(s− z)

(s− z)2
dz +

F2(s)

s2

)
,

where F2 is the Laplace transform of f ′′ and the sum is over the non-trivial

zeros ρ of ζ(s).

Indeed Kadiri established the explicit formula in more general setting. See
Theorem 1 in [7]. For more on explicit formula, see Guinand [5] and Weil [20].

Kadiri considered

Re

[∑

n≥1

Λ(n)

ns
f(logn)

(
1− κ

nδ

)]
,

where 0 < κ < 1 and 0 < δ < 1 are the constants that will be fixed later. In
view of Proposition 1 we get

Re
∑

n≥1

Λ(n)

ns
f(logn)

(
1− κ

nδ

)

= f(0)∆1(s) +D(s− 1)−
∑

ρ∈Z(ζ)

D(s− ρ) + ∆2(s),(2)

where

∆1(s) = T1(s)− κT1(s+ δ), ∆2(s) = T2(s)− κT2(s+ δ),
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D(s) = ReF (s)− κReF (s+ δ), T1(s) = −1

2
log π +

1

2
Re

Γ′

Γ

(
s

2
+ 1

)
,

T2(s) = Re

(
1

2πi

∫ 1/2+i∞

1/2−i∞
Re

Γ′

Γ

(
z

2

)
F2(s− z)

(s− z)2
dz +

F2(s)

s2

)

=
1

2π

∫ ∞

−∞
Re

Γ′

Γ

(
1

4
+ i

t

2

)
Re

F2(s− 1/2− it)

(s− 1/2− it)2
dt+Re

F2(s)

s2
.

Then
∑

n≥1

f(logn)
Λ(n)

nσ

(
1− κ

nδ

) K∑

k=0

ak cos(kγ0 logn) ≥ 0,

where
∑K

k=0 ak cos(kv) ≥ 0 with ak ≥ 0. In view of (2) we get

K∑

k=0

ak

[
f(0)∆1(σ + ikγo) +D(σ − 1 + ikγo)

−
∑

ρ∈Z(ζ)

D(σ + ikγo − ρ) + ∆2(σ + ikγo)

]
≥ 0.(3)

Kadiri estimated upper bounds for
∑K

k=0 akf(0)∆1(σ+ikγ0),
∑K

k=0 akD(σ−1+

ikγ0), and
∑K

k=0 ak∆2(σ+ ikγ0), and lower bound for
∑K

k=0 ak
∑

ρ∈Z(ζ) D(σ+

ikγ0 − ρ). In [7] the following trigonometric inequality

P (v) =
4∑

k=0

ak cos(kv) = 8(0.91 + cos v)2(0.265 + cos v)2 ≥ 0

is used. Kadiri introduced the variables η, r and ω as follows. Let η = 1 − β0

and write

η =
1

r log γ0
,

where 5 ≤ r ≤ R. Let T0 = 3330657430.697 and assume that γ0 ≥ T0. Note
that in [7] Kadiri used Wedeniwski’s numerical verification of the Riemann
Hypothesis: if ρ is a non-trivial zero of ζ(s) and 0 < Im(ρ) < 3330657430.697,
then Re(ρ) = 1

2 , i.e., the Riemann Hypothesis is true for those zeros. See [19].
Let

σ = 1− 1

R log(4γ0 + t0)

and

ω =
1− σ

η
,

where t0 is a real number with t0 > 1. (Kadiri put t0 = 10.) According to
Theorem 1 of [15] one may take R = 9.645908801. Thus

σ ≥ σ0 = 1− 1

R log(4T0 + t0)
,
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η ≤ η0 =
1

r logT0
≤ 1

5 logT0
,

and

ω =
1− σ

η
=

r log γ0
R log(4γ0 + t0)

≥ r logT0

R log(4T0 + t0)
=

1− σ0

η0
.

We set

ω0 =
1− σ0

η0
.

So, ω0 ≤ ω < 1. Let

A =

4∑

k=1

ak = 35.78532.

We now impose on f to satisfy

(4) Re(F (z)) ≥ 0 for Re(z) ≥ 0.

Kadiri proved the followings.

Proposition 2. There exists a function C3(η) such that

4∑

k=0

ak
∑

ρ∈Z(ζ)

D(σ + ikγ0 − ρ) ≥ a1F (σ − β0)− C3(η),

where C3(η) is given in [7, Section 4.1].

Proof. See Section 4.1 of [7]. �

To get a lower bound for
∑4

k=0 ak
∑

ρ∈Z(ζ) D(σ+ikγ0−ρ) Kadiri considered

firstly the case where k = 1 and ρ ∈ {ρ0, 1− ρ̄}:
D(σ − β0) +D(σ − 1 + β0) ≥ F (σ − β0) + E(η),

where E(η) is given in (34) of [7]. In the case that k = 0, 2, 3, 4 or k = 1 with
ρ /∈ {ρ0, 1− ρ̄0}, Kadiri divided the set Z(ζ)∗ into two parts Z(ζ)∗ = S1 ∪ S2,
where

Z(ζ)∗ =

{
Z(ζ) \ {ρ0, 1− ρ̄0}, for k = 1,
Z(ζ), otherwise,

S1 = {ρ = β+iγ ∈ Z(ζ)∗ | 1
2 ≤ β ≤ σ} and S2 = {ρ = β+iγ ∈ Z(ζ)∗ | σ < β}.

For the sum over ρ ∈ S1 Kadiri generalized Stechkin’s work to the Laplace form
F (z):

Proposition (A generalization of Lemma 2 of [16]). For 1
2 ≤ β ≤ σ and y > 0,

we have

D(σ − β + iy) +D(σ − 1 + β + iy) ≥ 0,

where δ ≥ 0.61963 and 0 < κ verify the conditions given in [7, Proposition 4.2].

Proof. See Proposition 4.2 of [7]. �



1298 W.-J. JANG AND S.-H. KWON

For these choices for δ and κ the sum
∑4

k=0 ak
∑

ρ∈S1
D(σ + ikγ0 − ρ) > 0

can be discarded. Note that σ < β yields |γ| > kγ0 + t0. For the sum over
ρ ∈ S2 Kadiri estimated the zero density of ζ(s).

Proposition 3. There exists a function C1(η) such that

f(0)

4∑

k=0

ak∆1(σ + ikγ0) ≤
A

2
(1− κ)f(0) log γ0 + C1(η),

where C1(η) is given in [7, Section 4.2].

Proof. See Section 4.2 of [7]. �

Proposition 4. There exists a function C2(η) such that

4∑

k=0

akD(σ − 1 + ikγ0) ≤ a0F̃ (σ − 1, 0) + C2(η),

where C2(η) is given in [7, Section 4.3].

Proof. See Section 4.3 of [7]. �

Proposition 5. There exists a function C4(η) such that

4∑

k=0

ak∆2(σ + ikγ0) ≤ C4(η),

where C4(η) is given in [7, Section 4.4].

Proof. See Section 4.4 of [7]. �

In addition, for the proofs of Propositions 2-5 Kadiri estimated the upper

bounds for |ReΓ′

Γ (z)| and observed in detail how behave the Laplace transform
F (s).

Gathering together (3) and Propositions 2-5 we obtained that

(5) 0 ≤ A

2
(1− κ)f(0) log γ0 + a0F (σ − 1)− a1F (σ − β0) + C(η),

where

C(η) = C1(η) + C2(η) + C3(η) + C4(η).

Kadiri used for f(t) the function given in Lemma 7.4 of [6] with λ = 1. For
θ ∈]π/2, π[ Kadiri set f(t) = ηhθ(ηt), where

hθ(u) = (1 + tan2 θ)

{
(1 + tan2 θ)

( −θ

tan θ
− u

2

)
cos(u tan θ) +

−2θ

tan θ
− u

− sin(2θ + u tan θ)

sin(2θ)
+ 2

(
1 +

sin(θ + u tan θ)

sin θ

)}
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for u ∈ [0, −2θ
tan θ ]. Kadiri verified that C(η) < 0 for η ∈ [0, η0]. From (5) it

follows now that

A

2
(1− κ)ηhθ(0) log γ0 ≥ a1F (σ − β0)− a0F (σ − 1).

Let

K(ω, θ) := a1F (σ − β0)− a0F (σ − 1)

=

∫ d

0

(
a1e

(β0−σ)t − a0e
(1−σ)t

)
f(t)dt

=

∫ d1(θ)

0

(a1e
−t − a0)hθ(t)e

ωtdt,

where d = d1(θ)
η and d1(θ) =

−2θ
tan θ . Ultimately we get

(6) η log γ0 ≥ K(ω, θ)
A
2 (1− κ)hθ(0)

.

Kadiri chose r = 5.94292, θ = 1.848 for which K(ω, θ) is increasing with
ω ≥ ω0 = 0.579471. For the choices δ = 0.61963 · · · , κ = 0.44213 · · · , we get

η log γ0 ≥ K(ω0, 1.848)
A
2 (1− 0.44213 · · · )h1.848(0)

≥ 1

5.942924085
.

We let now R = 5.942924086 and repeat the same calculations. Kadiri iterated
six times and obtained R0 = 5.69693. This proves Theorem 1. Setting

σ = 1− 1

R log(4γ0 + t0)
< 1, f(t) = ηhθ(ηt), ω =

1− σ

η
,

and dealing skilfully with them are very original parts in Kadiri’s method.
In the next section we will apply Kadiri’s method to various functions f(t).

4. Various choices for f(t) and trigonometric inequalities

In this Section we will apply Kadiri’s methods to various functions and
reduce R0. Heath-Brown proposed several functions for f(t) in Lemmas 7.1-
7.4 of [6]. Kadiri used the function given in Lemma 7.4 of [6]. We will use the
functions given in Lemmas 7.1-7.4 of [6] in Propositions 6-9 below, respectively.
Moreover, Heath-Brown mentioned a suggestion for optimizing f(t) that would
lead a possible improvement in Section 16 of [6]. Following this idea Xylouris
found a family of functions f in [21]. See also [22]. In Proposition 10 below we
will use these functions.

In order to find optimal trigonometric inequalities we consider

2(a+ cos v)2 ≥ 0,

8(a+ cos v)2(b + cos v)2 ≥ 0,

32(a+ cos v)2(b+ cos v)2(c+ cos v)2 ≥ 0,
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where 0 < a, b, c < 1. We have observed numerically that the first and the third
inequalities lead worse values for R0. So, we take the trigonometric inequality
of the form

4∑

k=0

ak cos(kv) = 8(a+ cos v)2(b + cos v)2

with 0 < a, b < 1. According to [11] and [12] the Riemann Hypothesis is true
for the non-trivial zeros ρ with Im(ρ) ≤ 30610046000. From now on we let
T0 = 30610046000 and R = 5.69693. Let η, η0, ω, ω0, and A be as in Section
3.

Proposition 6. Let 0 < θ < π
2 and let λ > 0. Set

h1,θ(u) = λ(1 + tan2 θ)

{
λ(1 + tan2 θ)

(
θ

λ tan θ
− u

2

)
cos(uλ tan θ)

+
2θ

tan θ
− λu +

sin(2θ − uλ tan θ)

sin 2θ
− 2

(
1 +

sin(θ − uλ tan θ)

sin θ

)}

for 0 < u < 2θ
λ tan θ . Let f(t) = ηh1,θ(ηt). If we let λ = 1.03669, θ = 1.13537,

a = 0.909198, and b = 0.261704, then R0 = 5.68372.

Proof. We verify numerically that the maximum

max
0<λ

0<θ<π
2

0<a,b<1

K(1, θ)

Ah1,θ(0)

reaches approximately at λ = 1.03669, θ = 1.13537, a = 0.909198, and b =
0.261704. So we choose these values for λ, θ, a, and b, respectively. For the
choices λ = 1.03669 and θ = 1.13537 we verify that f(t) satisfies (1). Hence we
can use Kadiri’s method for f(t). We proceed as [7] and perform four iterations.
For each iteration, we determine δ, κ and the error term C(η) as Section 4 of
[7]. Our numerical results are as follows :

δ = 0.620388, κ = 0.439672, C(η) = −135.097η+ 143.458η2 + 117622η3.

We verified that C(η) < 0 for η ∈ [0, η0] and
∂
∂ωK(ω, θ) > 0 for θ = 1.13537.

In view of (6) we get

η log γ0 ≥ K(ω0, 1.13537)
A
2 (1− 0.439672)h1,1.13537(0)

≥ 1

5.68372
.

We conclude that R0 = 5.68372. �

Proposition 7. Let λ > 0. Set

h2,λ(u) =
1

30
λ(2 − λu)3(4 + 6λu+ λ2u2)

for 0 < u < 2
λ . Let f(t) = ηh2,λ(ηt). If λ = 1.98916, a = 0.909192, and

b = 0.261661, then R0 = 5.68483.
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Proof. Let

K(ω, λ) =

∫ 2
λ

0

(a1e
−t − a0)h2,λ(t)e

ωtdt.

We verify numerically that the maximum

max
0<λ

0<a,b<1

K(1, λ)

Ah2,λ(0)

reaches approximately at λ = 1.98916, a = 0.909192, and b = 0.261661. So we
choose these values for λ, a, and b, respectively. For the choice λ = 1.98916 we
verify that f(t) satisfies (1). Hence we can use Kadiri’s method for f(t). We
proceed as [7] and perform four iterations. For each iteration, we determine
δ, κ and the error term C(η) as Section 4 of [7]. Our numerical results are as
follows:

δ = 0.620396, κ = 0.439654, C(η) = −48.0479η+ 52.8366η2 + 43329.8η3.

We verified that C(η) < 0 for η ∈ [0, η0] and
∂
∂ωK(ω, λ) > 0 for λ = 1.98916.

In view of (6) we get

η log γ0 ≥ K(ω0, 1.98916)
A
2 (1− 0.439654)h2,1.98916(0)

≥ 1

5.68483
.

We conclude that R0 = 5.68483. �

As our proofs of Propositions 8 and 9 below are analogous to that of Propo-
sition 6 we omit its proofs.

Proposition 8. Let θ > 0 and let λ > 0. Set

h3,θ(u) = λ(1− tanh2 θ)

{
λ(1 − tanh2 θ)

(
θ

λ tanh θ
− u

2

)
cosh(uλ tanh θ)

+
2θ

tanh θ
− λu+

sinh(2θ − uλ tanh θ)

sinh 2θ
− 2

(
1 +

sinh(θ − uλ tanh θ)

sinh θ

)}

for 0 < u < 2θ
λ tanh θ . Let f(t) = ηh3,θ(ηt). If we let λ = 2.00106, θ = 0.135923,

a = 0.909215, and b = 0.260906, then R0 = 5.68484.

Proposition 9. Let π
2 < θ < π and let λ > 0. Set

h4,θ(u) = λ(1 + tan2 θ)

{
λ(1 + tan2 θ)

( −θ

λ tan θ
− u

2

)
cos(uλ tan θ)− 2θ

tan θ

− λu− sin(2θ + uλ tan θ)

sin(2θ)
+ 2

(
1 +

sin(θ + uλ tan θ)

sin θ

)}

for 0 < u < −2θ
λ tan θ . Let f(t) = ηh4,θ(ηt). If we let λ = 0.630225, θ = 1.75566,

a = 0.909282, and b = 0.262108, then R0 = 5.68486.
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Following the suggestions in Section 16 of [6] Xylouris found a family of
functions for f(t) in Chapter 5 of [21]. Let γ be a positive real number. Set

g(t) = c1 cos(x1t) + c2 cosh(x2t)− c3

for −γ ≤ t ≤ γ and g(t) = 0 for |t| ≥ γ, where c1, c2, x1, and x2 are real
numbers, and

c3 = c1 cos(x1γ) + c2 cosh(x2γ).

Then g is continuous, non-negative, even function supported in an interval
(−γ, γ). Set

h5,γ(u) = (g ∗ g)(u) =
∫ γ

u−γ

g(x)g(u− x) dx,

for 0 < u < 2γ. Then h5,γ satisfies the conditions (1) and (4). We will use
those functions in Proposition 10 below.

Proposition 10. Let γ, g(t), and h5,γ(u) be as above. Let f(t) = ηh5,γ(ηt).
If a = 0.91, b = 0.265, γ = 0.509607, c1 = 0.675805, x1 = 0.463784, c2 =
0.799229, and x2 = 0.40991, then R0 = 5.68371.

Proof. Let

K(ω, γ) =

∫ 2γ

0

(a1e
−t − a0)h5,γ(t)e

ωtdt.

We verify numerically that the maximum

max
0<γ

0<c1,c2,x1,x2<1

K(1, γ)

h5,γ(0)

reaches approximately at γ = 0.509607, c1 = 0.675805, x1 = 0.463784, c2 =
0.799229, and x2 = 0.40991. For those choices we proceed as [7] and perform
four iterations. For each iteration, we determine δ, κ and the error term C(η)
as Section 4 of [7]. Our numerical results are as follows:

δ = 0.620388, κ = 0.439672,

C1(η) ≤ −0.0000159759η,

C2(η) ≤ −6.73037 · 10−6η + 1.12991 · 10−25η2 + 0.000172321η3,

C3(η) ≤ 2.90148 · 10−6η + 0.0000209955η2 + 0.000455292η3,

C4(η) ≤ 0.016588η3,

and
C(η) = −0.0000198048η+ 0.0000209955η2 + 0.0172156η3.

We verified that C(η) < 0 for η ∈ [0, η0] and
∂
∂ωK(ω, γ) > 0 for γ = 0.509607.

In view of (6) we get

η log γ0 ≥ K(ω0, 0.509607)
A
2 (1− 0.439672)h5,0.509607(0)

≥ 1

5.68371
.

We conclude that R0 = 5.68371. �
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In view of Propositions 6-10 we conclude therefore the following.

Proposition 11. We can take R0 = 5.68371.

Remarks. (1) In the proof of Proposition 10 we obtained R0 = 5.68371 with
various values for a, b, γ, c1, c2, x1, and x2: e.g. a = 0.909202, b = 0.261712,
γ = 0.509747, c1 = 0.824381, c2 = 2.16732, x1 = 2.26558, and x2 = 0.0346198.

(2) According to [21] one can take also

g(t) = c1 cosh(x1t) cos(x2t) + c2 sinh(x1t) sin(x2t)− c3,

where γ > 0, c1, c2, x1, and x2 are real numbers, and

c3 = c1 cosh(x1γ) cos(x2γ) + c2 sinh(x1γ) sin(x2γ).

Using those g(t) we obtained rather worse values for R0: e.g. for the choices
a = 0.91, b = 0.265, c1 = 1, c2 = 0.5, x1 = 1, x2 = 1, and γ = 0.508, we
obtained R0 = 5.68383.

For the computations we have used Mathematica.
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