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Abstract. Let M be an R-module and S a semigroup. Our goal is to discuss zero-divisors

of the semigroup module M [S]. Particularly we show that if M is an R-module and S a

commutative, cancellative and torsion-free monoid, then the R[S]-module M [S] has few

zero-divisors of size n if and only if the R-module M has few zero-divisors of size n and

Property (A).

1. Introduction

Let S be a commutative semigroup and M be an R-module. One can define the
semigroup module M [S] as an R[S]-module constructed from the semigroup S and
the R-module M similar to the standard definition of semigroup rings. Obviously
similar to semigroup rings, the zero-divisors of the semigroup module M [S] are
interesting to investigate ([6, p. 82] and [12]).

We write each element of g ∈ M [S] as “polynomials” g = m1X
s1 + m2X

s2 +
· · ·+mnX

sn , where m1, · · · ,mn ∈M and s1, · · · , sn are distinct elements of S and
this representation of g is called the canonical form of g. We define the content c(g)
of g ∈M [S] to be the R-submodule of M generated by the coefficients of g.

Northcott gave a nice generalization of Dedekind-Mertens Lemma as follows: if
S is a commutative, cancellative and torsion-free monoid and M is an R-module,
then for all f ∈ R[S] and g ∈ M [S], there exists a natural number k such that
c(f)kc(g) = c(f)k−1c(fg) ([16]). Dedekind-Mertens Lemma has different versions
with various applications ([1], [2], [3], [8], [9], [15], [18] and [19] and [20]). One of its
interesting consequences is McCoy’s Theorem on zero-divisors ([6, p. 96] and [14]):
If M is a nonzero R-module and S is a commutative, cancellative and torsion-free
monoid, then for all f ∈ R[S] and g ∈ M [S] − {0}, if fg = 0, then there exists an
m ∈M − {0} such that f.m = 0.

An R-module M is said to have few zero-divisors of size n, if ZR(M) is a finite
union of n prime ideals p1, · · · ,pn of R such that pi ⊈ pj for all i ̸= j. Also note
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that an R-module M has Property (A), if each finitely generated ideal I ⊆ ZR(M)
has a nonzero annihilator in M . We use McCoy’s Theorem to prove that if M is
an R-module and S a commutative, cancellative and torsion-free monoid, then the
R[S]-module M [S] has few zero-divisors of size n, if and only if the R-module M
has few zero-divisors of size n and Property (A).

In this paper all rings are commutative with identity and all modules are uni-
tal. Unless otherwise stated, our notation and terminology will follow as closely as
possible that of Gilmer [6].

2. Zero-divisors of semigroup modules

Let us recall that if R is a ring and f = a0+a1X+· · ·+anX
n is a polynomial on

the ring R, then content of f is defined as the R-ideal, generated by the coefficients
of f , i.e. c(f) = (a0, a1, · · · , an). The content of an element of a semigroup module
is a natural generalization of the content of a polynomial as follows:

Definition 1. Let M be an R-module and S be a commutative semigroup. Let
g ∈M [S] and put g = m1X

s1 +m2X
s2 + · · ·+mnX

sn , where m1, · · · ,mn ∈M and
s1, · · · , sn ∈ S. We define the content of g to be the R-submodule of M generated
by the coefficients of g, i.e. c(g) = (m1, · · · ,mn).

Theorem 2. Let S be a commutative monoid and M be a nonzero R-module. Then
the following statements are equivalent:

1. S is a cancellative and torsion-free monoid.

2. For all f ∈ R[S] and g ∈ M [S], there is a natural number k such that
c(f)kc(g) = c(f)k−1c(fg).

3. (McCoy’s Property) For all f ∈ R[S] and g ∈ M [S] − {0}, if fg = 0, then
there exists an m ∈M − {0} such that f.m = 0.

4. For all f ∈ R[S], AnnM (c(f)) = 0 if and only if f /∈ ZR[S](M [S]).

Proof. (1)→ (2) has been proved in [16].
For (2) → (3), assume that f ∈ R[S] and g ∈ M [S] − {0}, such that fg = 0.

So there exists a natural number k such that c(f)kc(g) = c(f)k−1c(fg) = (0). Take
t the smallest natural number such that c(f)tc(g) = (0) and choose m a nonzero
element of c(f)t−1c(g). It is easy to check that f.m = 0.

For (3) → (1), we prove that if S is not cancellative or not torsion-free then
(1) cannot hold. For the moment, suppose that S is not cancellative, so there exist
s, t, u ∈ S such that s+ t = s+ u while t ̸= u. Put f = Xs and g = (qXt − qXu),
where q is a nonzero element of M . Then obviously fg = 0, while f.m ̸= 0 for
all m ∈ M − {0}. Finally suppose that S is cancellative but not torsion-free.
Let s, t ∈ S be such that s ̸= t, while ns = nt for some natural n. Choose the
natural number k minimal so that ks = kt. Then we have 0 = qXks − qXkt =
(
∑k−1

i=0 X(k−i−1)s+it)(qXs − qXt), where q is a nonzero element of M .
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Since S is cancellative, the choice of k implies that (k − i1 − 1)s + i1t ̸= (k −
i2 − 1)s + i2t for 0 ≤ i1 < i2 ≤ k − 1. Therefore

∑k−1
i=0 X(k−i−1)s+it ̸= 0, and this

completes the proof. (3)↔ (4) is obvious. 2

Corollary 3. Let M be an R-module and S be a commutative, cancellative and
torsion-free monoid. Then the following statements hold:

1. R is a domain if and only if R[S] is a domain.

2. If p is a prime ideal of R, then p[S] is a prime ideal of R[S].

3. If p is in AssR(M), then p[S] is in AssR[S](M [S]).

Definition 4. Let M be an R-module and P be a proper R-submodule of M . P is
said to be a prime submodule (primary submodule) of M , if rx ∈ P implies x ∈ P
or rM ⊆ P (there exists a natural number n such that rnM ⊆ P ), for each r ∈ R
and x ∈M .

Corollary 5. Let M be an R-module and S be a commutative, cancellative and
torsion-free monoid. Then the following statements hold:

1. (0) is a prime (primary) submodule of M if and only if (0) is a prime (pri-
mary) submodule of M [S].

2. If P is a prime (primary) submodule of M , then P [S] is a prime (primary)
submodule of M [S].

In [5], it has been defined that a ring R has few zero-divisors, if Z(R) is a finite
union of prime ideals. We give the following definition and prove some interesting
results about zero-divisors of semigroup modules. Modules having (very) few zero-
divisors, introduced in [15], have also some interesting homological properties [17].

Definition 6. An R-module M has very few zero-divisors, if ZR(M) is a finite
union of prime ideals in AssR(M).

Remark 7. Examples of modules having very few zero-divisors. If R is a Noetherian
ring and M is an R-module such that AssR(M) is finite, then obviously M has very
few zero-divisors. For example AssR(M) is finite if M is a finitely generated R-
module [13, p. 55]. Also if R is a Noetherian quasi-local ring and M is a balanced
big Cohen-Macaulay R-module, then AssR(M) is finite [4, Proposition 8.5.5, p.
344].

Remark 8. Let R be a ring and consider the following three conditions on R:

1. R is a Noetherian ring.

2. R has very few zero-divisors.

3. R has few zero-divisors.
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Then, (1)→ (2)→ (3) and none of the implications are reversible.

Proof. For (1)→ (2) use [13, p. 55]. It is obvious that (2)→ (3).
Suppose k is a field, A = k[X1, X2, X3, · · · , Xn, · · · ] and m = (X1, X2, X3, · · · ,

Xn, · · · ) and at last a = (X2
1 , X

2
2 , X

2
3 , · · · , X2

n, · · · ). Since A is a domain, A has very
few zero-divisors while it is not a Noetherian ring. Also consider the ring R = A/a.
It is easy to check that R is a quasi-local ring with the only prime ideal m/a and
Z(R) = m/a and finally m/a /∈ AssR(R). Note that AssR(R) = ∅ [15]. 2

Theorem 9. Let M be an R-module and S a commutative, cancellative and torsion-
free monoid. Then the R[S]-module M [S] has very few zero-divisors, if and only if
the R-module M has very few zero-divisors.

Proof. (←): Let ZR(M) = p1∪p2∪· · ·∪pn, where pi ∈ AssR(M) for all 1 ≤ i ≤ n.
We will show that ZR[S](M [S]) = p1[S]∪p2[S]∪ · · · ∪pn[S]. Let f ∈ ZR[S](M [S]),
so there exists an m ∈M − {0} such that f.m = 0 and so c(f).m = (0). Therefore
c(f) ⊆ ZR(M) and this means that c(f) ⊆ p1 ∪ p2 ∪ · · · ∪ pn and according to the
Prime Avoidance Theorem, we have c(f) ⊆ pi, for some 1 ≤ i ≤ n and therefore
f ∈ pi[S]. Now let f ∈ p1[S] ∪ p2[S] ∪ · · · ∪ pn[S], so there exists an i such that
f ∈ pi[S], so c(f) ⊆ pi and c(f) has a nonzero annihilator in M and this means
that f is a zero-divisor of M [S]. Note that by Corollary 3, pi[S] ∈ AssR[S](M [S])
for all 1 ≤ i ≤ n.

(→): Let ZR[S](M [S]) = ∪ni=1Qi, where Qi ∈ AssR[S](M [S]) for all 1 ≤ i ≤ n.
Therefore ZR(M) = ∪ni=1(Qi ∩R). Without loss of generality, we can assume that
Qi ∩ R ⊈ Qj ∩ R for all i ̸= j. Now we prove that Qi ∩ R ∈ AssR(M) for all
1 ≤ i ≤ n. Consider g ∈ M [S] such that Qi = Ann(g) and g = m1X

s1 +m2X
s2 +

· · · + mnX
sn , where m1, · · · ,mn ∈ M and s1, · · · , sn ∈ S. It is easy to see that

Qi ∩ R = Ann(c(g)) ⊆ Ann(m1) ⊆ ZR(M) and by the Prime Avoidance Theorem,
Q1 ∩R = Ann(m1). 2

In [11], it has been defined that a ring R has Property (A), if each finitely gen-
erated ideal I ⊆ Z(R) has a nonzero annihilator. We give the following definition:

Definition 10. An R-module M has Property (A), if each finitely generated ideal
I ⊆ ZR(M) has a nonzero annihilator in M .

Remark 11. If the R-module M has very few zero-divisors, then M has Property
(A).

Theorem 12. Let S be a commutative, cancellative and torsion-free monoid and
M be an R-module. The following statements are equivalent:

1. The R-module M has Property (A).

2. For all f ∈ R[S], f is M [S]-regular if and only if c(f) is M -regular.

Proof. (1) → (2): Let the R-module M have Property (A). If f ∈ R[S] is M [S]-
regular, then f.m ̸= 0 for all nonzero m ∈ M and so c(f).m ̸= (0) for all nonzero
m ∈ M and according to the definition of Property (A), c(f) ̸⊆ ZR(M). This
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means that c(f) is M -regular. Now let c(f) be M -regular, so c(f) ̸⊆ ZR(M) and
this means that c(f).m ̸= (0) for all nonzero m ∈ M and hence f.m ̸= 0 for all
nonzero m ∈M . Since S is a commutative, cancellative and torsion-free monoid, f
is not a zero-divisor of M [S], i.e. f is M [S]-regular.

(2)→ (1): Let I be a finitely generated ideal of R such that I ⊆ ZR(M). Then
there exists an f ∈ R[S] such that c(f) = I. But c(f) is not M -regular, therefore
according to our assumption, f is notM [S]-regular. Therefore there exists a nonzero
m ∈ M such that f.m = 0 and this means that I.m = (0), i.e. I has a nonzero
annihilator in M . 2

Let, for the moment, M be an R-module such that the set ZR(M) of zero-
divisors of M is a finite union of prime ideals. One can consider ZR(M) = ∪ni=1pi

such that pi ⊈ ∪nj=1∧j ̸=ipj for all 1 ≤ i ≤ n. Obviously we have pi ⊈ pj for all
i ̸= j. Also, it is easy to check that, if ZR(M) = ∪ni=1pi and ZR(M) = ∪mk=1qk

such that pi ⊈ pj for all i ̸= j and qk ⊈ ql for all k ̸= l, then m = n and
{p1, · · · ,pn} = {q1, · · · ,qn}, i.e. these prime ideals are uniquely determined (Use
the Prime Avoidance Theorem). This is the base for the following definition:

Definition 13. An R-module M is said to have few zero-divisors of size n, if
ZR(M) is a finite union of n prime ideals p1, · · · ,pn of R such that pi ⊈ pj for all
i ̸= j.

Theorem 14. Let M be an R-module and S a commutative, cancellative and
torsion-free monoid. Then the R[S]-module M [S] has few zero-divisors of size n, if
and only if the R-module M has few zero-divisors of size n and Property (A).

Proof. (←): By considering the R-module M having Property (A), similar to the
proof of Theorem 9, we have if ZR(M) = ∪ni=1pi, then ZR[S](M [S]) = ∪ni=1pi[S].
Also it is obvious that pi[S] ⊆ pj [S] if and only if pi ⊆ pj for all 1 ≤ i, j ≤ n.
These two imply that the R[S]-module M [S] has few zero-divisors of size n.

(→): Note that ZR(M) ⊆ ZR[S](M [S]). It is easy to check that if ZR[S](M [S]) =
∪ni=1Qi, where Qi are prime ideals of R[S] for all 1 ≤ i ≤ n, then ZR(M) =
∪ni=1(Qi ∩ R). Now we prove that the R-module M has Property (A). Let I ⊆
ZR(M) be a finite ideal of R. Choose f ∈ R[S] such that I = c(f). So c(f) ⊆
ZR(M) and obviously f ∈ ZR[S](M [S]) and according to McCoy’s property, there
exists a nonzero m ∈ M such that f.m = 0. This means that I.m = 0 and I
has a nonzero annihilator in M . Consider that by a similar discussion in (←), the
R-module M has few zero-divisors obviously not less than size n and this completes
the proof. 2

An R-module M is said to be primal, if ZR(M) is an ideal of R [5]. It is easy
to check that if ZR(M) is an ideal of R, then it is a prime ideal and therefore the
R-module M is primal if and only if M has few zero-divisors of size one.

Corollary 15. Let M be an R-module and S a commutative, cancellative and
torsion-free monoid. Then the R[S]-module M [S] is primal, if and only if the R-
module M is primal and has Property (A).
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