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Abstract. A right ideal I of a ring R is small in case for every proper right ideal K

of R, K + I 6= R. A right R-module M is called PS-injective if every R-homomorphism

f : aR → M for every principally small right ideal aR can be extended to R → M . A ring

R is called right PS-injective if R is PS-injective as a right R-module. We develop, in

this article, PS-injectivity as a generalization of P -injectivity and small injectivity. Many

characterizations of right PS-injective rings are studied. In light of these facts, we get

several new properties of a right GPF ring and a semiprimitive ring in terms of right

PS-injectivity. Related examples are given as well.

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules
are unitary. Let R be a ring. The Jacobson radical and nil radical of R are denoted
by J(R) and Nil(R), respectively. The right singular ideal is denoted by Z(RR),
the socles are denoted by soc(RR) and soc(RR). If X is a subset of R, the right
(resp. left) annihilator of X in R is denoted by rR(X) (resp. lR(X)). Let M and N
be right R-modules. Extn(M,N) (resp. Torn(R/aR,M)) means ExtnR(M,N) (resp.
TorRn (R/aR,M)). If N is a submodule of M , we write N ≤ess M and N � M to
indicate that N is an essential submodule and a small submodule of M , respectively.
The character module M+ is defined by M+ = HomZ(M,Q/Z). We will use the
usual notations from [1, 5, 6, 9].

The concept of injectivity was firstly introduced by Baer in [2]. In recent
decades, the generalizations of injective rings are extensively studied by many au-
thors (see [3-4, 7-12]). Let R be a ring. A right ideal I of R is called small if
for every proper right ideal K of R, K + I 6= R. A ring R is called right small
injective [10] if every R-homomorphism f : I → R for every small right ideal I
can be extended to R → R. A ring R is said to be right P -injective [7] (resp.
mininjective [4 or 8]) if every R-homomorphism f : aR → R for every principally
(resp. minimal) right ideal aR can be extended to R → R. In this paper, we say
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that R is principally small injective (abbr. PS-injective) if every R-homomorphism
f : aR → R for every principally small right ideal aR can be extended to R → R.
The concept of PS-injective rings is introduced as a generalization of P -injective
rings and small injective rings. Some examples of PS-injective rings are given. We
show that if R is right PS-injective and satisfies the ACC on right annihilators of
elements, then J(R) = Z(RR). In [7], Nicholson and Yousif proved that, if R is a
right P -injective ring and R/soc(RR) satisfies the ACC on right annihilators, then
J(R) is nilpotent. We extend their results from a right P -injective ring to a right
PS-injective ring. If R is semiregular, we prove that R is right P -injective if and
only if R is right PS-injective. It is shown that being a right PS-injective ring is
not a Morita invariant. A ring R is a right GPF ring [7] if it is right P -injective,
semiperfect and soc(RR) ≤ess RR. Here we give a new characterization of a right
GPF ring in terms of right PS-injectivity. Finally, we also give a characterization
of a semiprimitive ring.

2. Main results

Definition 2.1. Let R be a ring. A right R-module M is called principally small
injective (abbr. PS-injective) if every R-homomorphism f : aR → M for every
principally small right ideal aR can be extended to R→M , equivalently, if f = m·
is left multiplication by some element m ∈M . A ring R is called right PS-injective
if R is PS-injective as a right R-module. Similarly, we have the concept of left
PS-injective rings.

Remark 2.2. It is easy to see that a right R-module M is PS-injective if and only
if every R-homomorphism f : aR→M for every principally right ideal aR in J(R)
can be extended to R→M .

The following lemma is frequently used in the sequel.

Lemma 2.3. The following are equivalent for a ring R.

(1) R is right PS-injective.

(2) For all a ∈ J(R), lRrR(a) = Ra.

(3) rR(a) ⊆ rR(b), where a ∈ J(R), b ∈ R, implies that Rb ⊆ Ra.

(4) For all a ∈ J(R), b ∈ R, lR[bR ∩ rR(a)] = lR(b) + Ra.

(5) If f : aR→ R, a ∈ J(R), is R-linear, then f(a) ∈ Ra.

Proof. The proof is modeled on that of [9, Lemma 5.1].
(1)⇒(2). If m ∈ lRrR(a), then rR(a) ⊆ rR(m), so f : aR→ R by f(ar) = mr is

well defined. By assumption, f = c· for some c ∈ R, whence m = f(a) = ca ∈ Ra.
The other inclusion is clear.

(2)⇒(3). If rR(a) ⊆ rR(b), for a ∈ J(R), b ∈ R, then b ∈ lRrR(a), so b ∈ Ra by
(2). Thus Rb ⊆ Ra.
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(3)⇒(4). For any a ∈ J(R), b ∈ R, it is clear that lR(b) + Ra ⊆ lR[bR ∩ rR(a)].
If x ∈ lR[bR ∩ rR(a)], then bR ∩ rR(a) ⊆ rR(x). If y ∈ rR(ab), then aby = 0, so
by ∈ rR(a), and hence by ∈ bR ∩ rR(a) ⊆ rR(x), implies that y ∈ rR(xb). Thus
rR(ab) ⊆ rR(xb). Note that ab ∈ J(R), so xb = rab for some r ∈ R by (3). Then
x− ra ∈ lR(b), proving that lR[bR ∩ rR(a)] ⊆ lR(b) + Ra.

(4)⇒(2). Let b = 1 in (4).

(2)⇒(5). Let f : aR → R, a ∈ J(R), be R-linear, and write f(a) = d. Then
rR(a) ⊆ rR(d), so d ∈ lRrR(a) = Ra.

(5)⇒(1). Let f : aR→ R. By (5) write f(a) = ca, c ∈ R. Then f = c·. 2

Corollary 2.4. A direct product of rings R =
∏

i∈I Ri is right PS-injective if and
only if Ri is right PS-injective for all i ∈ I.

Proof. By [6, Exercises 4.12], J(R) =
∏

J(Ri). Then the result follows by lemma
2.3. 2

Remark 2.5. Here give some examples of PS-injective rings.

(1) Obviously, every right P -injective ring is right PS-injective.

(2) Every right small injective ring is right PS-injective. Moreover, a semiprim-
itive ring (that is, a ring such that J(R) = 0) is right and left PS-injective.

Example 1. Let R = Z, the ring of integers. Then R is semiprimitive, and hence
is PS-injective. But R is not a P -injective ring.

Example 2(Björk Example). Let F be a field and assume that a 7→ ā is an
isomorphism F → F̄ ⊆ F , where the subfield F̄ 6= F . Let R denote the left vector
space on basis {1, t}, and make R into an F -algebra by defining t2 = 0 and ta = āt
for all a ∈ F . Then R is right P -injective. But R is not right small injective by [10,
Example 3.7].

(3) Every right PS-injective ring is right mininjective. Moreover, every right
PS-injective ring is right minsymmetric (if kR simple, k ∈ R, implies that Rk is
simple). In fact, in view of [6, Lemma 10.22], every minimal right ideal of R is
either nilpotent or a direct summand of R. But the converse is not true as the next
example.

Example 3. Let R = {
[

a v
0 a

]
| a ∈ F, v ∈ V } be the trivial extension of a

field F by a two-dimensional vector space V over F . By [9, Example 5.12], R
is a commutative, local, artinian ring. Then R[x], the polynomial ring over R,
is a commutative mininjective ring by [9, Example 2.3]. But R[x] is not a PS-

injective ring. In fact, let V = uF ⊕ wF , and write ū =

[
0 u
0 0

]
∈ J(R) .

Then ūR =

[
0 uF
0 0

]
and

[
0 ua
0 0

]
7→
[

0 wa
0 0

]
is an R-linear map from

ūR→ R that can not be extended to R→ R because w /∈ uF . Hence R is not a PS-
injective ring. By Lemma 2.3, there exists 0 6= a ∈ J(R) such that lRrR(a) 6= Ra.
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By [6, Proposition 10.27], J(R) = Nil(R) because R is commutative artinian, so
a ∈ Nil(R). Then a ∈ Nil(R)[x] = J(R[x]) by [6, Theorem 5.1], and hence
lR[x]rR[x](a) = (lRrR(a))[x] 6= (Ra)[x] = (R[x])a. So R[x] is not PS-injective by
Lemma 2.3 again.

(4) If R is the direct product of R1 and R2 where R1 is a right P -injective ring
that is not right small injective and R2 is a right small injective ring that is not
right P -injective, observe that R is a right PS-injective ring that is neither right
P -injective nor right small injective. Following Example 1, Example 2 and Example
3, we have the following relations in which every inclusion is proper:

right P -injective rings
right small injective rings

}
$ right PS-injective rings$ right mininjective rings.

Theorem 2.6. If R is a right PS-injective ring, then J(R) ⊆ Z(RR). Moreover,
if R is right PS-injective and satisfies the ACC on right annihilators of elements,
then J(R) = Z(RR).

Proof. Let a ∈ J(R), and bR ∩ rR(a) = 0 for any b ∈ R. By Lemma 2.3,
lR(b) + Ra = lR[bR ∩ rR(a)] = lR(0) = R, so lR(b) = R because a ∈ J(R), im-
plies that b = 0. Thus a ∈ Z(RR). The second assertion follows from [5, Theorem
7.15 (1)]. 2

Corollary 2.7. Let R be a right PS-injective and reduced ring. Then R is
semiprimitive.

Proof. By [5, Lemma 7.8], Z(RR) = 0 since R is reduced. Then J(R) = 0 by
Theorem 2.6. 2

Example 4. Let R = Z(p), the localization ring of Z at the prime p. Then R is
a commutative local mininjective ring because it has no minimal ideals. Since R
is a domain, Z(RR) = 0 and J(R) = pZp 6= 0. Therefore, R is not a PS-injective
ring by Theorem 2.6. However, we claim that the polynomial ring R[x] over R is
PS-injective. Because R is a domain, it is a reduced ring. By [6, Corollary 5.2],
R[x] is semiprimitive. Therefore, R[x] is PS-injective in terms of Remark 2.5 (2).

Example 5. Let R be a non-semiprimitive reduced ring. Then R is a right and
left mininjective ring but not a right PS-injective ring. In fact, R has not nonzero
nilpotent ideal. Thus R is a right and left mininjective ring. Suppose that R is a
right PS-injective ring. Then R is semiprimitive by Corollary 2.7, a contradiction.

Example 6. Let R be the ring of all N-square upper triangular matrices over a field
F that are constant on the diagonal and have only finitely many nonzero entries
off the diagonal ([12, Example 1.7]). So R is right mininjective, Z(RR) = 0 and
J(R) 6= 0. By Theorem 2.6, R is not right PS-injective.

The next result is a generalization of [7, Theorem 2.2].
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Theorem 2.8. If R is a right PS-injective ring and R/soc(RR) satisfies the ACC
on right annihilators, then J(R) is nilpotent.

Proof. Write S = soc(RR) and R = R/S. For any sequence a1, a2, a3, · · · ∈ J(R),
there is an ascending chain

rR(a1) ⊆ rR(a2 a1) ⊆ rR(a3 a2 a1) ⊆ · · · .

By hypothesis, there exists a positive integer m such that

rR(am · · · a2 a1) = rR(am+k · · · am · · · a2 a1), k = 1, 2, · · · .

Since an+1an · · · a1 ∈ J(R) ⊆ Z(RR) by Theorem 2.6, rR(an+1an · · · a1) is the
essential right ideal of R. Then S ⊆ rR(an+1an · · · a1).

Now we prove that

rR(an · · · a2 a1) ⊆ rR(an+1an · · · a1)/S ⊆ rR(an+1 an · · · a1) (1)

In fact, for any b + S ∈ rR(an · · · a2 a1), an · · · a1b ∈ S. Then an+1an · · · a1b =
0 because S ⊆ rR(an+1). So b ∈ rR(an+1an · · · a1), and hence b + S ∈
rR(an+1an · · · a1)/S. But the second inclusion is clear.

Since rR(am · · · a2 a1) = rR(am+2 am+1 · · · a2 a1), by (1), rR(am+1am · · · a1)/S
= rR(am+2am+1 · · · a1)/S. Then rR(am+1am · · · a1) = rR(am+2am+1 · · · a1), and
so (am+1am · · · a1)R ∩ rR(am+2) = 0. Since rR(am+2) is also an essential right
ideal of R, am+1am · · · a1 = 0. So J(R) is a right T -nilpotent ideal and the ideal
(J(R)+S)/S of R is also a right T -nilpotent. By [1, Proposition 29.1], (J(R)+S)/S
is nilpotent. Then there exists a positive integer t such that (J(R))t ⊆ S, so
(J(R))t+1 ⊆ J(R)S = 0, as desired. 2

Proposition 2.9. If R is right PS-injective, so is eRe for all e2 = e ∈ R satisfying
ReR = R.

Proof. Let S = eRe and rS(a) ⊆ rS(b), where a ∈ J(S), b ∈ S. Since J(S) =
J(eRe) = eJe, aR is a principally small ideal of R. Since ReR = R, we write
1 =

∑n
i=1 aiebi, where ai, bi ∈ R. Let ax = 0, x ∈ R. Then a(exaie) = axaie = 0

for each i, so b(exaie) = 0 because rS(a) ⊆ rS(b). Thus bx =
∑n

i=1 bxaiebi = 0
because b = be. Then rR(a) ⊆ rR(b). By Lemma 2.3, b = eb ∈ eRa = Sa.
Therefore, S is right PS-injective by Lemma 2.3 again. 2

Corollary 2.10. If the matrix ring Mn(R) over a ring R is right PS-injective, so
is R.

Proof. If S = Mn(R) is right PS-injective, so is R ∼= e11Se11 by Proposition 2.9
because Se11S = S (here e11 denotes the n × n matrix whose (1, 1)-entry is 1 and
others are zero). 2

Let R be a ring and I, K be two right ideals. Recall that R is called right
(I,K)-m-injective (see [12, Definition 1.1]) if, for any m-generated right ideal U ⊆ I
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and any R-homomorphism f : U → K, f = c· for some c ∈ R. R is right (I,K)-FP-
injective if, for any n ≥ 1 and any finitely generated R-submodule N of In, every
R-homomorphism f : N → K can be extended to an R-homomorphism g : Rn → R,
where In (resp. Rn) denotes the set of all 1 × n matrices over I (resp. R). It is
clear that a right (J,R)-FP-injective ring is right J-injective in the sense of [3].

It has been shown that R is a right FP -injective ring if and only if Mn(R) is a
right P -injective ring for each n ≥ 1 (see [9, Theorem 5.41]). Similarly, we have the
following result.

Theorem 2.11. The following are equivalent for a ring R.

(1) R is right (J,R)-FP-injective.

(2) Mn(R) is right PS-injective for all integers n ≥ 1.

Proof. By [12, Lemma 1.3], R is a right (J,R)-FP-injective ring if and only if Mn(R)
is a right (Mn(J),Mn(R))-1-injective ring for every n ≥ 1; equivalently Mn(R) is a
right PS-injective ring because Mn(J) = J(Mn(R)). 2

A ring R is called semiregular if R/J(R) is (Von Neumann) regular and idem-
potents lift modulo J(R), equivalently if, for any a ∈ R, there exists e2 = e ∈ Ra
such that a(1− e) ∈ J(R) (cf. [9, Lemma B.40]).

Proposition 2.12. If R is a semiregular ring. Then R is right P -injective if and
only if R is right PS-injective.

Proof. (⇒) follows by Remark 2.5 (1).
(⇐). Let f : aR→ R, a ∈ R, be an R-homomorphism. Since R is semiregular,

Ra = Re ⊕ Rb where e2 = e and b ∈ J(R). Thus rR(a) = rR(Re ⊕ Rb) =
rR(Re) ∩ rR(b) = (1 − e)R ∩ rR(b), and hence lRrR(a) = lR[(1 − e)R ∩ rR(b)].
Let x = f(a). Then x ∈ lRrR(a) = lR[(1 − e)R ∩ rR(b)]. Thus rR(b(1 − e)) ⊆
rR(x(1 − e)). So g : b(1 − e)R → R given by b(1 − e)y 7→ x(1 − e)y is a well
defined R-homomorphism. Since b(1 − e) ∈ J(R), g = c· for some c ∈ R because
R is right PS-injective. Thus x(1 − e) = g(b(1 − e)) = cb(1 − e), and hence
f(a) = x = xe + x(1− e) = xe + cb(1− e) = (x− cb)e + cb ∈ Re + Rb = Ra. So R
is a right P -injective. 2

A ring R is called semiperfect if R/J(R) is semisimple and idempotents lift
modulo J(R). So a semiperfect ring is semiregular.

Corollary 2.13. If R is a semiperfect and right PS-injective ring, then R ∼=
R1 ×R2, where R1 is semisimple and every simple right ideal of R2 is nilpotent.

Proof. It follows from Proposition 2.12 and [7, Theorem 1.4]. 2

Remark 2.14. (1) By Theorem 2.11 and Corollary 2.10, every right (J,R)-FP-
injective ring is right PS-injective. But the converse is not true in general. For
example, the Björk example (see Example 2) is a local, left artinian right GPF
ring R. By Example 2, R is right PS-injective. Now we prove that R is not right
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(J,R)-FP-injective.

Proof. It is mentioned in [9, Example 5.34] that R is not a left GPF ring. Suppose
that R is right (J,R)-FP-injective. Then Mn(R) is right PS-injective by Theorem
2.11. But R is semiperfect, and hence Mn(R) is also semiperfect. So Mn(R) is
right P -injective by Proposition 2.12. Then R is right FP -injective by [9, Theorem
5.41], so R is right 2-injective. In view of [9, Corollary 5.32], R is a left GPF ring,
a contradiction. 2

By the above conclusion, being a right PS-injective ring is not Morita invariant
property.

(3) The Björk example shows that R is right PS-injective but is not left PS-
injective.

A ring R is said to be right Kasch if every simple right R-module embeds in R,
equivalently lR(T ) 6= 0 for every maximal right ideal T of R. A ring is called left
min-CS if every minimal left ideal is essential in a direct summand of RR. Now we
give a new characterization of a right GPF ring by using right PS-injectivity.

Theorem 2.15. The following are equivalent for a ring R.

(1) R is a right GPF ring.

(2) R is a semiperfect, right PS-injective ring with soc(RR) = soc(RR) ≤ess RR.

(3) R is a right PS-injective, right and left Kasch and left min-CS ring.

Proof. (1)⇒(2) is trivial.
(2)⇒(3). By [9, Theorem 5.31], R is a right and left Kasch ring. For every mini-

mal left ideal K of R, in view of [9, Theorem 2.32 and Theorem 5.31], lRrR(K) = K.
Since R is semiperfect, write rR(K) = (1 − e)R + bR, where e2 = e and b ∈ J(R).
Then lRrR(K) = Re ∩ lR(b). Note that b ∈ J(R), so lR(b) ⊇ lR(J(R)) = soc(RR).
By (2), soc(RR) ≤ess RR, so lR(b) is essential in RR. Then, lRrR(K) ≤ess Re by
[9, Lemma 1.1 (2)], and hence K ≤ess Re. Thus R is left min-CS.

(3)⇒(2). Let T be a maximal right ideal of R. Then lR(T ) 6= 0 because R is
right Kasch. Then there is 0 6= a ∈ lR(T ), and hence T ⊆ rR(a) 6= R. So T = rR(a).
Then aR ∼= R/rR(a) = R/T is a simple right ideal. Note that Ra is also a simple
left ideal by [9, Theorem 2.21] because R is right mininjective. If (Ra)2 6= 0, then
Ra is a direct summand of R, and so lRrR(a) = Ra. Otherwise, a ∈ J(R), so
lRrR(a) = Ra by Lemma 2.3. By hypothesis, lR(T ) = lRrR(a) = Ra ≤ess Re for
some e2 = e ∈ R. Thus, by [9, Lemma 4.1], R is semiperfect. By [9, Lemma 4.5],
soc(RR) = soc(RR) ≤ess RR.

(2)⇒(1). By Proposition 2.12, R is right P -injective since R is semiperfect, as
desired. 2

Corollary 2.16. If R is right PS-injective with soc(RR) ≤ess RR and the ascending
chain rR(a1) ⊆ rR(a1a2) ⊆ · · · ⊆ rR(a1a2 · · · an) ⊆ · · · terminates for every infinite
sequence a1, a2, · · · in R, then R is a right GPF ring.
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Proof. Note that R is right minsymmetric. So, in view of [11, Lemma 2.2], R is
right perfect. Then R is a right GPF ring by Theorem 2.15. 2

Remark 2.17. The condition soc(RR) ≤ess RR can not be omitted. If R = Z is
the ring of integers, then R is a PS-injective and noetherian ring but R is not a
GPF ring because R is not P -injective.

It is easy to see that a right R-module M is PS-injective if and only if
Ext1(R/aR,M) = 0 for any right principally small ideal aR. At the end of this
paper, we give a characterization of a semiprimitive ring.

Proposition 2.18. The following are equivalent for a ring R.

(1) R is semiprimitive.

(2) Every right (or left) R-module is PS-injective.

(3) Every right (or left) simple R-module is PS-injective.

(4) Every right (or left) principally small ideal is PS-injective.

(5) Every right (or left) principally small ideal is pure in R.

Proof. (1)⇒(2), (2)⇒(3) and (2)⇒(4) are trivial.

(3)⇒(1). Let a ∈ J(R). If J(R) + rR(a) < R, then we take a maximal right
ideal K of R such that J(R) + rR(a) ≤ K. Then R/K is PS-injective by (3). Note
that the homomorphism f : aR → R/K given by f(ax) = x + K, x ∈ R is a
well defined homomorphism. So there exists c ∈ R such that f = (c + K)·. Then
1 + K = f(a) = (c + K)a = ca + K, implies that 1 − ca ∈ K. But ca ∈ K, which
yields 1 ∈ K, a contradiction. Therefore J(R) + rR(a) = R and so rR(a) = R
because J(R)� R. So a = 0. Hence J(R) = 0.

(4)⇒(1). Let a ∈ J(R). By (4), aR is PS-injective. Thus the inclusion map
aR→ R splits, so aR is a direct summand of R. Since aR� R, aR = 0. Therefore,
J(R) = 0.

(2)⇒(5). For any right principally small ideal aR and any left R-module M ,
there exists the standard isomorphism Ext1(R/aR,M+) ∼= Tor1(R/aR,M)+. By
(2), Ext1(R/aR,M+) = 0, so Tor1(R/aR,M) = 0. Then R/aR is flat, and hence
aR is pure in R.

(5)⇒(2). Let aR be a right principally small ideal. Then R/aR is flat, and
hence is projective. Thus aR is a direct summand of R. Hence every right R-
module is PS-injective. 2
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