• 제목/요약/키워드: R.M.R

검색결과 16,550건 처리시간 0.045초

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • Zhao, Wei
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1513-1528
    • /
    • 2021
  • Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map 𝜙 : R → RNil(R) by ${\phi}(r)=\frac{r}{1}$ for r ∈ R and 𝜓 : M → MNil(R) by ${\psi}(x)=\frac{x}{1}$ for x ∈ M. Then 𝜓(M) is a 𝜙(R)-module. An R-module P is said to be 𝜙-projective if 𝜓(P) is projective as a 𝜙(R)-module. In this paper, 𝜙-exact sequences and 𝜙-projective R-modules are introduced and the rings over which all R-modules are 𝜙-projective are investigated.

PSEUDO SYMMETRY OF M(R) AND N(R)

  • JUNG, EUN-SUK
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.15-20
    • /
    • 2001
  • Reduced Von Neumann Regular ring is pseudo symmetric and N(R) is reduced. Thus N(R) is pseudo symmetric and M(R) is reduced if and only if M(R) = N(R).

  • PDF

ON REGULAR NEAR-RINGS WITH (m,n)-POTENT CONDITIONS

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.441-447
    • /
    • 2009
  • Jat and Choudhari defined a near-ring R with left bipotent or right bipotent condition in 1979. Also, we can dene a near-ring R as subcommutative if aR = Ra for all a in R. From these above two concepts it is natural to investigate the near-ring R with the properties aR = $Ra^2$ (resp. $a^2R$ = Ra) for each a in R. We will say that such is a near-ring with (1,2)-potent condition (resp. a near-ring with (2,1)-potent condition). Thus, we can extend a general concept of a near-ring R with (m,n)-potent condition, that is, $a^mR\;=\;Ra^n$ for each a in R, where m, n are positive integers. We will derive properties of near-ring with (1,n) and (n,1)-potent conditions where n is a positive integer, any homomorphic image of (m,n)-potent near-ring is also (m,n)-potent, and we will obtain some characterization of regular near-rings with (m,n)-potent conditions.

On the Subsemigroups of a Finite Cyclic Semigroup

  • Dobbs, David Earl;Latham, Brett Kathleen
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.607-617
    • /
    • 2014
  • Let S = C(r,m), the finite cyclic semigroup with index r and period m. Each subsemigroup of S is cyclic if and only if either r = 1; r = 2; or r = 3 with m odd. For $r{\neq}1$, the maximum value of the minimum number of elements in a (minimal) generating set of a subsemigroup of S is 1 if r = 3 and m is odd; 2 if r = 3 and m is even; (r-1)/2 if r is odd and unequal to 3; and r/2 if r is even. The number of cyclic subsemigroups of S is $r-1+{\tau}(m)$. Formulas are also given for the number of 2-generated subsemigroups of S and the total number of subsemigroups of S. The minimal generating sets of subsemigroups of S are characterized, and the problem of counting them is analyzed.

ON STRONGLY CONNECTED MODULES WITH PERFECT

  • PARK CHIN HONG;LEE JEONG KEUN;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.653-662
    • /
    • 2005
  • In this paper we shall give the relationships among $T_R,\;End_{R}(M),\;SEnd_{R}(M)\;and\;SAut_R(M)$ when M is a perfect R-module. If M and N are perfect modules, we get $SAut_{R}(M {\times}N){\cong}SAut_{R}(M){\times}SAut_R(N)$. Also we shall discuss that $_x(M)_H$ is a subgroup of $_x(M)$ if M is quasi-perfect and $_x(M)_H$ is a normal subgroup of $_x(M)$ if M is perfect.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES

  • Naghipour, Ali Reza;Hafshejani, Javad Sedighi
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1165-1176
    • /
    • 2020
  • Let M be a module over a commutative ring R. In this paper, we study Int(R, M), the module of integer-valued polynomials on M over R, and IntM(R), the ring of integer-valued polynomials on R over M. We establish some properties of Krull dimensions of Int(R, M) and IntM(R). We also determine when Int(R, M) and IntM(R) are nontrivial. Among the other results, it is shown that Int(ℤ, M) is not Noetherian module over IntM(ℤ) ∩ Int(ℤ), where M is a finitely generated ℤ-module.

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.