• Title/Summary/Keyword: R-functions

Search Result 1,758, Processing Time 0.028 seconds

Numerical solving of initial-value problems by Rbf basis functions

  • Gotovac, Blaz;Kozulic, Vedrana
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.263-285
    • /
    • 2002
  • This paper presents a numerical procedure for solving initial-value problems using the special functions which belong to a class of Rvachev's basis functions $R_{bf}$ based on algebraic and trigonometric polynomials. Because of infinite derivability of these functions, derivatives of all orders, required by differential equation of the problem and initial conditions, are used directly in the numerical procedure. The accuracy and stability of the proposed numerical procedure are proved on an example of a single degree of freedom system. Critical time step was also determined. An algorithm for solving multiple degree of freedom systems by the collocation method was developed. Numerical results obtained by $R_{bf}$ functions are compared with exact solutions and results obtained by the most commonly used numerical procedures for solving initial-value problems.

On Approximation of Functions Belonging to Lip(α, r) Class and to Weighted W(Lr,ξ(t)) Class by Product Mean

  • Nigam, Hare Krishna;Sharm, Ajay
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.545-556
    • /
    • 2010
  • A good amount of work has been done on degree of approximation of functions belonging to Lip${\alpha}$, Lip($\xi$(t),r) and W($L_r,\xi(t)$) and classes using Ces$\`{a}$ro, N$\"{o}$rlund and generalised N$\"{o}$rlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using (N,$p_n$)(C, 1) product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f\;\in\;Lip({\alpha},r)$ class and $f\;\in\;W(L_r,\;\xi(t))$ class by (N, $p_n$)(C, 1) product summability means of its Fourier series.

CHARACTERIZATION OF CERTAIN TYPES OF r-PLATEAUED FUNCTIONS

  • Hyun, Jong Yoon;Lee, Jungyun;Lee, Yoonjin
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1469-1483
    • /
    • 2018
  • We study a subclass of p-ary functions in n variables, denoted by ${\mathcal{A}}_n$, which is a collection of p-ary functions in n variables satisfying a certain condition on the exponents of its monomial terms. Firstly, we completely classify all p-ary (n - 1)-plateaued functions in n variables by proving that every (n - 1)-plateaued function should be contained in ${\mathcal{A}}_n$. Secondly, we prove that if f is a p-ary r-plateaued function contained in ${\mathcal{A}}_n$ with deg f > $1+{\frac{n-r}{4}}(p-1)$, then the highest degree term of f is only a single term. Furthermore, we prove that there is no p-ary r-plateaued function in ${\mathcal{A}}_n$ with maximum degree $(p-1){\frac{n-4}{2}}+1$. As application, we partially classify all (n - 2)-plateaued functions in ${\mathcal{A}}_n$ when p = 3, 5, and 7, and p-ary bent functions in ${\mathcal{A}}_2$ are completely classified for the cases p = 3 and 5.

Design and Analysis of Code Sequence Generating Algorithms using Almost Perfect Nonlinear Functions (APN 함수를 이용한 부호계열 발생 알고리즘 설계 빛 분석)

  • Lee, Jeong-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • For cryptographic systems, nonlinearity is crucial since most linear systems are easily decipherable. C.Bracken, Z.Zhaetc., propose the APN(Almost Perfect Nonlinear) functions with the properties similar to those of the bent functions with perfect nonlinearity. We design two kinds of new code sequence generating algorithms using the above APN functions. And we find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{ii}(\tau)$ and the crosscorrelation functions, $R_{ik}(\tau)$ of the binary code sequences generated by two new algorithms over GF(2), have three values of {-1, $-1-2^{n/2}$, $-1+2^{n/2}$}. We also find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{p,ii}(\tau)$ and the crosscorrelation functions, $R_{p,ik}(\tau)$ of the nonbinary code sequences generated by the modified algorithms over GF(p), $p\;{\geq}\;3$, have also three values of {$-1+p^{n-1}$, $-1-p^{(n-1)/2}+p^{n-1}$, $-1+p^{(n-1)/2}p^{n-1}$}. We show that these code sequences have the characteristics of the correlation functions similar to those of Gold code sequences.

ON UNIVERSAL FUNCTIONS

  • Aron, Richard;Markose, Dinesh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.65-76
    • /
    • 2004
  • An entire function $f\;{\in}\;H(\mathbb{C})$ is called universal with respect to translations if for any $g\;{\in}\;H(\mathbb{C}),\;R\;>\;0,\;and\;{\epsilon}\;>\;0$, there is $n\;{\in}\;{\mathbb{N}}$ such that $$\mid$f(z\;+\;n)\;-\;g(z)$\mid$\;<\;{\epsilon}$ whenever $$\mid$z$\mid$\;{\leq}\;R$. Similarly, it is universal with respect to differentiation if for any g, R, and $\epsilon$, there is n such that $$\mid$f^{(n)}(z)\;-\;g(z)$\mid$\;<\;{\epsilon}\;for\;$\mid$z$\mid$\;{\leq}\;R$. In this note, we review G. MacLane's proof of the existence of universal functions with respect to differentiation, and we give a simplified proof of G. D. Birkhoff's theorem showing the existence of universal functions with respect to translation. We also discuss Godefroy and Shapiro's extension of these results to convolution operators as well as some new, related results and problems.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

A FUNCTIONS AND ITS GRAPH FUCTION

  • CHAE G. I.;SINGH V. P.;PARK Y. S.;GIHARE R. P.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • For topological spaces X, Y and the function f : X → Y, it induces a function gr(f) : X → X x Y defined as gr(f)(χ) = (χ, f(χ)), for every χ ∈ X. It deals with some preliminary investigations relating to the behavior of functions and its graph functions. It has also been found that continuous functions are homotopic if and only if their graph functions are homotopic.

  • PDF

RELATIVE (p, q) - 𝜑 ORDER BASED SOME GROWTH ANALYSIS OF COMPOSITE p-ADIC ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.361-370
    • /
    • 2021
  • Let 𝕂 be a complete ultrametric algebraically closed field and 𝓐 (𝕂) be the 𝕂-algebra of entire function on 𝕂. For any p-adic entire functions f ∈ 𝓐 (𝕂) and r > 0, we denote by |f|(r) the number sup {|f (x)| : |x| = r} where |·|(r) is a multiplicative norm on 𝓐 (𝕂). In this paper we study some growth properties of composite p-adic entire functions on the basis of their relative (p, q)-𝜑 order where p, q are any two positive integers and 𝜑 (r) : [0, +∞) → (0, +∞) is a non-decreasing unbounded function of r.