MEROMORPHIC FUNCTIONS SHARING SOME FINITE SETS IM

Manabu Shirosaki

Abstract

We show that if two nonconstant meromorphic functions f and g on \mathbb{C} sharing some finite sets IM , then there is a nonconstant rational function $R(z)$ such that $R(f)=R(g)$.

1. Introduction

For nonconstant meromorphic functions f and g on \mathbb{C} and a finite set S in $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, we say that f and g share $S \mathrm{CM}$ (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where the notations $f-\infty$ and $g-\infty$ mean $1 / f$ and $1 / g$, respectively. Also, if $f^{-1}(S)=g^{-1}(S)$, then we say that f and g share S IM (ignoring multiplicities). In particular if S is a one-point set $\{a\}$, then we say also that f and g share a CM or IM.

In [3] and [4], R. Nevanlinna showed the following two theorems:
Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions on \mathbb{C} and a_{1}, \ldots, a_{4} four distinct points in $\overline{\mathbb{C}}$. If f and g share a_{1}, \ldots, a_{4} $C M$, then f is a Möbius transform of g, i.e., $f=(a g+b) /(c g+d)$ for some complex numbers a, b, c, d with $a d-b c \neq 0$, and there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}, a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$. Furthermore, the Möbius transformation fixes $a_{\sigma(1)}$ and $a_{\sigma(2)}$, and $a_{\sigma(3)}$ and $a_{\sigma(4)}$ interchanges under the Möbius transformation.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions on \mathbb{C} sharing distinct five points in $\overline{\mathbb{C}} I M$. Then $f=g$.
Remark 1.3. Let $T(z)=(a z+b) /(c z+d)$ be a Möbius transformation of order 2 , i.e., $T^{2}=T \circ T$ is the identity. Then $d=-a$ and $a^{2}+b c \neq 0$. This Möbius transformation has two distinct fixed points ξ_{1}, ξ_{2} in $\overline{\mathbb{C}}$. Let T_{0} be a Möbius transformation such that $T_{0}(0)=\xi_{1}, T_{0}(\infty)=\xi_{2}$. Then the Möbius

Received April 14, 2017; Accepted August 10, 2017.
2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. uniqueness theorem, sharing sets, Nevanlinna theory.
transformation $T_{1}=T_{0} \circ T \circ T_{0}{ }^{-1}$ fixes 0 and ∞ and it is of order 2, and hence $T_{1}(z)=-z$. Put $w=T(z)$, then we have $T_{0}(w)=T_{0} \circ T(z)=T_{1} \circ T_{0}(z)=$ $-T_{0}(z)$, and hence $\left\{T_{0}(w)\right\}^{2}=\left\{T_{0}(z)\right\}^{2}$. Since the Möbius transformation of Theorem 1.1 is of order 2 , we see that the existence of a nonconstant rational function $R(z)$ such that $R(f)=R(g)$ under the assumption of Theorem 1.1. Of course, the existence of such a rational function is trivial if $f=g$.

In [6] the author showed the following:
Theorem 1.4. Let S_{1}, \ldots, S_{5} be pairwise disjoint one-point or two-point sets in $\overline{\mathbb{C}}$. If two nonconstant meromorphic functions f and g on \mathbb{C} share S_{1}, \ldots, S_{5} $I M$, then f is a Möbius transform of g.

The Möbius transformation in the conclusion of Theorem 1.4 is also of order 2 since the composition of it and itself has at least three fixed points. So, we see the existence of a rational function as in remark above.

By the results of [7-10], if two nonconstant meromorphic functions f and g on \mathbb{C} share pairwise disjoint one-point or two-point sets $S_{1}, S_{2}, S_{3}, S_{4} \mathrm{CM}$, then f is a Möbius transform of g, and hence there is a nonconstant rational function $R(z)$ such that $R(f)=R(g)$.

These raise the following problems:
Problem 1. Let q be an integer not less than 5. Let S_{1}, \ldots, S_{q} be pairwise disjoint finite sets in $\overline{\mathbb{C}}$. If two nonconstant meromorphic functions f and g share S_{1}, \ldots, S_{q} IM, then does there exist a nonconstant rational function $R(z)$ such that $R(f)=R(g)$?

Problem 2. Let q be an integer not less than 4 . Let S_{1}, \ldots, S_{q} be pairwise disjoint finite sets in $\overline{\mathbb{C}}$. If two nonconstant meromorphic functions f and g share $S_{1}, \ldots, S_{q} \mathrm{CM}$, then does there exist a nonconstant rational function $R(z)$ such that $R(f)=R(g)$?

Both problems are affirmatively answered, as shown above, for the case that the all finite sets are one-point sets or two-points sets, and also we can find similar results for polynomials in [1] and [5]. In this paper, we give a partial solution for Problem 1.

Theorem 1.5. Let p be a non-negative integer and let q be an integer not less than 2. Let S_{1}, \ldots, S_{p} be one-point sets in \mathbb{C} and let S_{p+1}, \ldots, S_{p+q} be n-point sets in \mathbb{C}, where n is an integer not less than 2 . Assume that S_{1}, \ldots, S_{p+q} are pairwise disjoint and that $p+q \geq 5$. If two distinct nonconstant meromorphic functions f and g on \mathbb{C} share $S_{1}, \ldots, S_{p+q} I M$, then there exists distinct j_{1}, j_{2} in $\{p+1, \ldots, p+q\}$ such that $P_{j_{2}}(f) / P_{j_{1}}(f)=P_{j_{2}}(g) / P_{j_{1}}(g)$, where $P_{j}(z)$ are defining polynomials of S_{j}.

By considering a suitable Möbius transformation, we have:
Corollary 1.6. Let p be a non-negative integer and let q be an integer not less than 2. Let S_{1}, \ldots, S_{p} be one-point sets in $\overline{\mathbb{C}}$ and let S_{p+1}, \ldots, S_{p+q} be n-point
sets in $\overline{\mathbb{C}}$, where n is an integer not less than 2. Assume that S_{1}, \ldots, S_{p+q} are pairwise disjoint and that $p+q \geq 5$. If two nonconstant meromorphic functions f and g on \mathbb{C} share S_{1}, \ldots, S_{p+q} IM, then there exists a nonconstant rational function $R(z)$ such $R(f)=R(g)$.

We assume that the reader is familiar with the standard notations and results of the value distribution theory (see, for example, [2]). In particular, we express by $S(r, f)$ quantities such that $\lim _{r \rightarrow \infty, r \notin E} S(r, f) / T(r, f)=0$, where E is a subset of $(0, \infty)$ with finite linear measure and it is variable in each cases.

2. Proof of Theorem 1.5

Now we start the proof of Theorem 1.5. We may assume that $p \leq 4$ by Theorem 1.2.

By the second main theorem and the first main theorem we have

$$
\begin{align*}
(p+n q-2) T(r, f) & \leq \sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{f-\xi}\right)+S(r, f) \\
& =\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{g-\xi}\right)+S(r, f) \\
& \leq(p+n q) T(r, g)+S(r, f) \tag{1}
\end{align*}
$$

and, by the same way,

$$
\begin{equation*}
(p+n q-2) T(r, g) \leq(p+n q) T(r, f)+S(r, g) \tag{2}
\end{equation*}
$$

Hence, by (1) and (2), there is no need to distinguish $S(r, f)$ and $S(r, g)$, and so we denote them by $S(r)$.

By $\bar{N}_{E}\left(r, \frac{1}{f-\xi}\right)$ and $\bar{N}_{N}\left(r, \frac{1}{f-\xi}\right)$ we denote the counting functions which count the point z such that $f(z)=\xi=g(z)$ and $f(z)=\xi \neq g(z)$ counted once, respectively, and we define $\bar{N}_{E}\left(r, \frac{1}{g-\xi}\right)$ and $\bar{N}_{N}\left(r, \frac{1}{g-\xi}\right)$ by the same way. It is easy to see that $\bar{N}_{N}\left(r, \frac{1}{f-\xi}\right)=\bar{N}_{N}\left(r, \frac{1}{g-\xi}\right)=0$ for $\xi \in S_{1} \cup \cdots \cup S_{p}$ and that

$$
\begin{align*}
\sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) & =\sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{g-\xi}\right), \\
\sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) & =\sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{g-\xi}\right) \tag{3}
\end{align*}
$$

for $j=p+1, \ldots, q$. Since $f-g \not \equiv 0$, we have

$$
\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) \leq \bar{N}\left(r, \frac{1}{f-g}\right) \leq T(r, f)+T(r, g)+O(1),
$$

and hence

$$
\begin{aligned}
\sum_{j=p+1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) & =\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{f-\xi}\right)-\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) \\
& \geq(p+n q-2) T(r, f)-T(r, f)-T(r, g)+S(r) \\
& =(p+n q-3) T(r, f)-T(r, g)+S(r)
\end{aligned}
$$

by using (1). By the same way and (3) we have

$$
\sum_{j=p+1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \geq(p+n q-3) T(r, g)-T(r, f)+S(r)
$$

Adding these two inequalities we obtain

$$
\begin{equation*}
\sum_{j=p+1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \geq \frac{1}{2}(p+n q-4)(T(r, f)+T(r, g))+S(r) \tag{4}
\end{equation*}
$$

Note that $q \geq 2$. From (4) we see that there exist distinct j_{1} and j_{2} in $\{p+1, \ldots, q\}$ and a subset I of $(0,+\infty)$ of infinite linear measure such that

$$
\begin{equation*}
\frac{1}{q}(p+n q-4)(T(r, f)+T(r, g))+S(r) \leq \sum_{\xi \in S_{j_{1}} \cup S_{j_{2}}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \tag{5}
\end{equation*}
$$

holds for $r \in I$. Put $Q(z, w)=\left(P_{j_{1}}(z) P_{j_{2}}(w)-P_{j_{1}}(w) P_{j_{2}}(z)\right) /(z-w)$ and $\Phi=Q(f, g)$. Assume that $\Phi \not \equiv 0$. If $f(z), g(z) \in S_{j_{1}} \cup S_{j_{2}}$ and $f(z) \neq g(z)$, then $\Phi(z)=0$. Therefore we have

$$
\begin{equation*}
\sum_{\xi \in S_{j_{1}} \cup S_{j_{2}}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \leq N_{0}\left(r, \frac{1}{\Phi}\right) \tag{6}
\end{equation*}
$$

holds for $r \in I$, where $N_{0}\left(r, \frac{1}{\Phi}\right)$ denotes the counting functions corresponding to the zeros of Φ that are not the poles of f and g. We see that $Q(z, w)$ is a symmetric polynomial of z and w and it has degree at most $n-1$ with respect to each of z and w. By using the first fundamental theorem and the definition of counting function and that of proximity function, we have

$$
\begin{aligned}
N_{0}\left(r, \frac{1}{\Phi}\right) & \leq N(r, Q(f, g))+m(r, Q(f, g)) \\
& \leq(n-1)(N(r, f)+N(r, g)+m(r, f)+m(r, g))+O(1) \\
& =(n-1)(T(r, f)+T(r, g))+O(1) .
\end{aligned}
$$

By connecting (5), (6) and this,

$$
\frac{1}{q}(p+n q-4)(T(r, f)+T(r, g))+S(r) \leq(n-1)(T(r, f)+T(r, g))+O(1)
$$

holds for $r \in I$. Here I may be different from that in (5). We obtain $p+n q-4 \leq$ $q(n-1)$, which contradicts hypothesis $p+q \geq 5$. Therefore we conclude that $\Phi \equiv 0$, which induces that $P_{j_{2}}(f) / P_{j_{1}}(f)=P_{j_{2}}(g) / P_{j_{1}}(g)$.

3. An application to the uniqueness

In this section, we apply the above results to the uniqueness of meromorphic functions. Let n be an integer not less than 2 , and let S_{1}, \ldots, S_{5} be pairwise disjoint n-point sets in \mathbb{C}. For each $j=1, \ldots, 5$, we take a defining polynomial $P_{j}(z)$ of S_{j}, and let $\xi_{j 1} \cdots \xi_{j n}$ be the distinct elements of S_{j}.

Theorem 3.1. Assume that

$$
\begin{equation*}
\frac{P_{j}\left(\xi_{l \mu}\right)}{P_{k}\left(\xi_{l \mu}\right)} \neq \frac{P_{j}\left(\xi_{i \nu}\right)}{P_{k}\left(\xi_{l \nu}\right)} \tag{7}
\end{equation*}
$$

for distinct $j, k, l \in\{1, \ldots, 5\}$ and $1 \leq \mu<\nu \leq n$. If two nonconstant meromorphic functions f and g on \mathbb{C} share $S_{1}, \ldots, S_{5} I M$, then $f=g$.
Proof. Assume that $f \neq g$. From Theorem 1, we may assume that

$$
\frac{P_{1}(f)}{P_{2}(f)}=\frac{P_{1}(g)}{P_{2}(g)}
$$

by renumbering S_{1}, \ldots, S_{5}, if necessary. By (7), there is no z such that $f(z), g(z)$ are distinct values in $S_{3} \cup S_{4} \cup S_{5}$. Therefore, f and g share each values in $S_{3} \cup S_{4} \cup S_{5}$. This fact yields, by Theorem 1.2, $f=g$, which is a contradiction. Hence we conclude $f=g$.
Remark 3.2. In the case of $n=2$, the assumption (7) becomes to

$$
\left|\begin{array}{ccc}
1 & a_{j} & b_{j} \\
1 & a_{k} & b_{k} \\
1 & a_{l} & b_{l}
\end{array}\right| \neq 0
$$

where $P_{j}(z)=z^{2}+a_{j} z+b_{j}$ and so on. This is a necessary and sufficient condition for the absence of a Möbius transformation exchanging two elements of each S_{j}, S_{k}, S_{l}.

For $n \geq 3$, we can weaken the assumption about (7). It is enough to hold (7) for distinct two l, in the case of $n=3,4$, and for one l, in the case of $n \geq 5$, different from any given $1 \leq j<k \leq 5$.

Acknowledgments. The author express great thanks to Professor Zieve who asked him Problem 1 and others. Also, he express thanks to the referee for his/her appropriate comments.

References

[1] W. W. Adams and E. G. Straus, Non-archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424.
[2] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367-391.
[4] ,Le théorèm de Picard-Borel et la théorie des fonctions méromorphes, GauthierVillars, Paris, 1929.
[5] I. V. Ostrovskii, F. B. Pakovitch, and M. G. Zaidenberg, A remark on complex polynomials of least deviation, Internat. Math. Res. Notices 1996 (1996), no. 14, 699-703.
[6] M. Shirosaki, On meromorphic functions sharing five one-point sets or two two-point sets IM, Proc Japan Acad. Ser. A 86 (2010), no. 1, 6-9.
[7] , On meromorphic functions sharing a one-point set and three two-point sets CM, Kodai Math. J. 36 (2013), no. 1, 56-68.
[8] , On meromorphic functions sharing four two-point sets CM, Kodai Math. J. 36 (2013), no. 2, 386-395.
[9] M. Shirosaki and M. Taketani, On meromorphic functions sharing two one-point sets and two two-point sets, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 32-35.
[10] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. 11 (1988), no. 2, 249-279.

Manabu Shirosaki
Department of Mathematical Schiences
Osaka Prefecture University
Sakai 599-8531, Japan
Email address: mshiro@ms.osakafu-u.ac.jp

