
Bull. Korean Math. Soc. 55 (2018), No. 3, pp. 865–870

https://doi.org/10.4134/BKMS.b170341

pISSN: 1015-8634 / eISSN: 2234-3016

MEROMORPHIC FUNCTIONS SHARING SOME FINITE

SETS IM

Manabu Shirosaki

Abstract. We show that if two nonconstant meromorphic functions f

and g on C sharing some finite sets IM, then there is a nonconstant
rational function R(z) such that R(f) = R(g).

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in C = C ∪ {∞}, we say that f and g share S CM (counting multiplicities)
if f−1(S) = g−1(S) and if for each z0 ∈ f−1(S) two functions f − f(z0) and
g − g(z0) have the same multiplicity of zero at z0, where the notations f −∞
and g−∞ mean 1/f and 1/g, respectively. Also, if f−1(S) = g−1(S), then we
say that f and g share S IM (ignoring multiplicities). In particular if S is a
one-point set {a}, then we say also that f and g share a CM or IM.

In [3] and [4], R. Nevanlinna showed the following two theorems:

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions
on C and a1, . . . , a4 four distinct points in C. If f and g share a1, . . . , a4

CM, then f is a Möbius transform of g, i.e., f = (ag + b)/(cg + d) for some
complex numbers a, b, c, d with ad − bc 6= 0, and there exists a permutation
σ of {1, 2, 3, 4} such that aσ(3), aσ(4) are Picard exceptional values of f and g
and the cross ratio (aσ(1), aσ(2), aσ(3), aσ(4)) = −1. Furthermore, the Möbius
transformation fixes aσ(1) and aσ(2), and aσ(3) and aσ(4) interchanges under
the Möbius transformation.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions on C
sharing distinct five points in C IM. Then f = g.

Remark 1.3. Let T (z) = (az+ b)/(cz+d) be a Möbius transformation of order
2, i.e., T 2 = T ◦ T is the identity. Then d = −a and a2 + bc 6= 0. This
Möbius transformation has two distinct fixed points ξ1, ξ2 in C. Let T0 be a
Möbius transformation such that T0(0) = ξ1, T0(∞) = ξ2. Then the Möbius
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transformation T1 = T0 ◦T ◦T0
−1 fixes 0 and∞ and it is of order 2, and hence

T1(z) = −z. Put w = T (z), then we have T0(w) = T0 ◦ T (z) = T1 ◦ T0(z) =
−T0(z), and hence {T0(w)}2 = {T0(z)}2. Since the Möbius transformation of
Theorem 1.1 is of order 2, we see that the existence of a nonconstant rational
function R(z) such that R(f) = R(g) under the assumption of Theorem 1.1.
Of course, the existence of such a rational function is trivial if f = g.

In [6] the author showed the following:

Theorem 1.4. Let S1, . . . , S5 be pairwise disjoint one-point or two-point sets
in C. If two nonconstant meromorphic functions f and g on C share S1, . . . , S5

IM, then f is a Möbius transform of g.

The Möbius transformation in the conclusion of Theorem 1.4 is also of order
2 since the composition of it and itself has at least three fixed points. So, we
see the existence of a rational function as in remark above.

By the results of [7–10], if two nonconstant meromorphic functions f and
g on C share pairwise disjoint one-point or two-point sets S1, S2, S3, S4 CM,
then f is a Möbius transform of g, and hence there is a nonconstant rational
function R(z) such that R(f) = R(g).

These raise the following problems:

Problem 1. Let q be an integer not less than 5. Let S1, . . . , Sq be pairwise

disjoint finite sets in C. If two nonconstant meromorphic functions f and g
share S1, . . . , Sq IM, then does there exist a nonconstant rational function R(z)
such that R(f) = R(g)?

Problem 2. Let q be an integer not less than 4. Let S1, . . . , Sq be pairwise

disjoint finite sets in C. If two nonconstant meromorphic functions f and g
share S1, . . . , Sq CM, then does there exist a nonconstant rational function
R(z) such that R(f) = R(g)?

Both problems are affirmatively answered, as shown above, for the case that
the all finite sets are one-point sets or two-points sets, and also we can find
similar results for polynomials in [1] and [5]. In this paper, we give a partial
solution for Problem 1.

Theorem 1.5. Let p be a non-negative integer and let q be an integer not less
than 2. Let S1, . . . , Sp be one-point sets in C and let Sp+1, . . . , Sp+q be n-point
sets in C, where n is an integer not less than 2. Assume that S1, . . . , Sp+q are
pairwise disjoint and that p+ q ≥ 5. If two distinct nonconstant meromorphic
functions f and g on C share S1, . . . , Sp+q IM, then there exists distinct j1, j2
in {p+ 1, . . . , p+ q} such that Pj2(f)/Pj1(f) = Pj2(g)/Pj1(g), where Pj(z) are
defining polynomials of Sj.

By considering a suitable Möbius transformation, we have:

Corollary 1.6. Let p be a non-negative integer and let q be an integer not less
than 2. Let S1, . . . , Sp be one-point sets in C and let Sp+1, . . . , Sp+q be n-point
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sets in C, where n is an integer not less than 2. Assume that S1, . . . , Sp+q are
pairwise disjoint and that p+q ≥ 5. If two nonconstant meromorphic functions
f and g on C share S1, . . . , Sp+q IM, then there exists a nonconstant rational
function R(z) such R(f) = R(g).

We assume that the reader is familiar with the standard notations and results
of the value distribution theory (see, for example, [2]). In particular, we express
by S(r, f) quantities such that limr→∞,r 6∈E S(r, f)/T (r, f) = 0, where E is a
subset of (0,∞) with finite linear measure and it is variable in each cases.

2. Proof of Theorem 1.5

Now we start the proof of Theorem 1.5. We may assume that p ≤ 4 by
Theorem 1.2.

By the second main theorem and the first main theorem we have

(p+ nq − 2)T (r, f) ≤
p+q∑
j=1

∑
ξ∈Sj

N(r,
1

f − ξ
) + S(r, f)

=

p+q∑
j=1

∑
ξ∈Sj

N(r,
1

g − ξ
) + S(r, f)

≤ (p+ nq)T (r, g) + S(r, f)(1)

and, by the same way,

(2) (p+ nq − 2)T (r, g) ≤ (p+ nq)T (r, f) + S(r, g).

Hence, by (1) and (2), there is no need to distinguish S(r, f) and S(r, g), and
so we denote them by S(r).

By NE(r, 1
f−ξ ) and NN (r, 1

f−ξ ) we denote the counting functions which

count the point z such that f(z) = ξ = g(z) and f(z) = ξ 6= g(z) counted once,
respectively, and we define NE(r, 1

g−ξ ) and NN (r, 1
g−ξ ) by the same way. It is

easy to see that NN (r, 1
f−ξ ) = NN (r, 1

g−ξ ) = 0 for ξ ∈ S1 ∪ · · · ∪ Sp and that∑
ξ∈Sj

NE(r,
1

f − ξ
) =

∑
ξ∈Sj

NE(r,
1

g − ξ
),

∑
ξ∈Sj

NN (r,
1

f − ξ
) =

∑
ξ∈Sj

NN (r,
1

g − ξ
)(3)

for j = p+ 1, . . . , q. Since f − g 6≡ 0, we have

p+q∑
j=1

∑
ξ∈Sj

NE(r,
1

f − ξ
) ≤ N(r,

1

f − g
) ≤ T (r, f) + T (r, g) +O(1),
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and hence
p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) =

p+q∑
j=1

∑
ξ∈Sj

N(r,
1

f − ξ
)−

p+q∑
j=1

∑
ξ∈Sj

NE(r,
1

f − ξ
)

≥ (p+ nq − 2)T (r, f)− T (r, f)− T (r, g) + S(r)

= (p+ nq − 3)T (r, f)− T (r, g) + S(r)

by using (1). By the same way and (3) we have

p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) ≥ (p+ nq − 3)T (r, g)− T (r, f) + S(r).

Adding these two inequalities we obtain

(4)

p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) ≥ 1

2
(p+ nq − 4)(T (r, f) + T (r, g)) + S(r).

Note that q ≥ 2. From (4) we see that there exist distinct j1 and j2 in
{p+ 1, . . . , q} and a subset I of (0,+∞) of infinite linear measure such that

(5)
1

q
(p+ nq − 4)(T (r, f) + T (r, g)) + S(r) ≤

∑
ξ∈Sj1∪Sj2

NN (r,
1

f − ξ
)

holds for r ∈ I. Put Q(z, w) = (Pj1(z)Pj2(w) − Pj1(w)Pj2(z))/(z − w) and
Φ = Q(f, g). Assume that Φ 6≡ 0. If f(z), g(z) ∈ Sj1 ∪ Sj2 and f(z) 6= g(z),
then Φ(z) = 0. Therefore we have

(6)
∑

ξ∈Sj1∪Sj2

NN (r,
1

f − ξ
) ≤ N0(r,

1

Φ
)

holds for r ∈ I, where N0(r, 1
Φ ) denotes the counting functions corresponding

to the zeros of Φ that are not the poles of f and g. We see that Q(z, w) is a
symmetric polynomial of z and w and it has degree at most n− 1 with respect
to each of z and w. By using the first fundamental theorem and the definition
of counting function and that of proximity function, we have

N0(r,
1

Φ
) ≤ N(r,Q(f, g)) +m(r,Q(f, g))

≤ (n− 1)(N(r, f) +N(r, g) +m(r, f) +m(r, g)) +O(1)

= (n− 1)(T (r, f) + T (r, g)) +O(1).

By connecting (5), (6) and this,

1

q
(p+ nq − 4)(T (r, f) + T (r, g)) + S(r) ≤ (n− 1)(T (r, f) + T (r, g)) +O(1)

holds for r ∈ I. Here I may be different from that in (5). We obtain p+nq−4 ≤
q(n − 1), which contradicts hypothesis p + q ≥ 5. Therefore we conclude that
Φ ≡ 0, which induces that Pj2(f)/Pj1(f) = Pj2(g)/Pj1(g).
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3. An application to the uniqueness

In this section, we apply the above results to the uniqueness of meromorphic
functions. Let n be an integer not less than 2, and let S1, . . . , S5 be pairwise
disjoint n-point sets in C. For each j = 1, . . . , 5, we take a defining polynomial
Pj(z) of Sj , and let ξj1 · · · ξjn be the distinct elements of Sj .

Theorem 3.1. Assume that

(7)
Pj(ξlµ)

Pk(ξlµ)
6= Pj(ξiν)

Pk(ξlν)

for distinct j, k, l ∈ {1, . . . , 5} and 1 ≤ µ < ν ≤ n. If two nonconstant mero-
morphic functions f and g on C share S1, . . . , S5 IM, then f = g.

Proof. Assume that f 6= g. From Theorem 1, we may assume that

P1(f)

P2(f)
=
P1(g)

P2(g)
,

by renumbering S1, . . . , S5, if necessary. By (7), there is no z such that
f(z), g(z) are distinct values in S3 ∪ S4 ∪ S5. Therefore, f and g share each
values in S3 ∪ S4 ∪ S5. This fact yields, by Theorem 1.2, f = g, which is a
contradiction. Hence we conclude f = g. �

Remark 3.2. In the case of n = 2, the assumption (7) becomes to∣∣∣∣∣∣
1 aj bj
1 ak bk
1 al bl

∣∣∣∣∣∣ 6= 0,

where Pj(z) = z2 + ajz + bj and so on. This is a necessary and sufficient
condition for the absence of a Möbius transformation exchanging two elements
of each Sj , Sk, Sl.

For n ≥ 3, we can weaken the assumption about (7). It is enough to hold
(7) for distinct two l, in the case of n = 3, 4, and for one l, in the case of n ≥ 5,
different from any given 1 ≤ j < k ≤ 5.
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