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CHARACTERIZATION OF CERTAIN TYPES OF

r-PLATEAUED FUNCTIONS

Jong Yoon Hyun, Jungyun Lee, and Yoonjin Lee

Abstract. We study a subclass of p-ary functions in n variables, denoted

by An, which is a collection of p-ary functions in n variables satisfying
a certain condition on the exponents of its monomial terms. Firstly, we

completely classify all p-ary (n− 1)-plateaued functions in n variables by

proving that every (n− 1)-plateaued function should be contained in An.
Secondly, we prove that if f is a p-ary r-plateaued function contained in

An with deg f > 1+ n−r
4

(p−1), then the highest degree term of f is only
a single term. Furthermore, we prove that there is no p-ary r-plateaued

function in An with maximum degree (p− 1)n−r
2

+ 1. As application, we

partially classify all (n− 2)-plateaued functions in An when p = 3, 5, and

7, and p-ary bent functions in A2 are completely classified for the cases

p = 3 and 5.

1. Introduction

Binary plateaued functions (more exactly, r-plateaued functions) are intro-
duced by Zheng and Zhang [12] for designing cryptographic functions. They are
important cryptographic functions due to their desirable cryptographic char-
acteristics such as high nonlinearity, resiliency, high algebraic degree and so on
(refer to [6,7] for instance). They also include some Boolean functions such as
bent functions, semi-bent functions and partially bent functions; 0-plateaued
functions are in fact bent functions. Furthermore, there has been extensive
research on p-ary plateaued functions (for example, refer to [1–3,5, 8–11]).
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According to Hou’s result [4, Theorem 4.6], he showed that for a p-ary
function f in one variable with p an odd prime, f is bent if and only if the
degree of f is two. The key idea for his proof is using the property that if f is
a p-ary function with deg f ≤ p−1

2 , then for any two monomial terms xu and
xv of f , we have that

u+ v ≤ p− 1.

Motivated by Hou’s result, Hyun et al. [5, Theorem 11] considered a p-ary
plateaued function f in n variables for which every exponent ui of a mono-
mial term xu1

1 xu2
2 · · ·xunn of f is at most p−1

2 . We denote the set of such p-ary
plateaued functions by An. Hyun et al proved that if f is a p-ary (n − 1)-
plateaued function in An then it can be written as follows:

(1) f(x) =

n∑
i=1

aix
2
i +

∑
u∈{0,1}n

buxu,

where x = (x1, x2, . . . , xn), xu = xu1
1 xu2

2 · · ·xunn , ai and bu are in Z∗p. In fact,
this result is an extension of Hou’s result [5], where he considered A1.

In this paper, we study a subclass An of p-ary functions in n variables.
Firstly, we completely classify all p-ary (n−1)-plateaued functions in n variables
by proving that every (n − 1)-plateaued function should be contained in An.
Secondly, we prove that if f is a p-ary r-plateaued function contained in An
with deg f > 1 + n−r

4 (p − 1), then the highest degree term of f is a single
term (Theorem 4.2). Furthermore, we prove that there is no p-ary r-plateaued
function in An with maximum degree (p − 1)n−r2 + 1 (Corollary 4.4). As
application, we partially classify all (n − 2)-plateaued functions in An when
p = 3, 5, and 7, and p-ary bent functions in A2 are completely classified for the
cases p = 3 and 5 (Section 5).

2. Preliminary

We introduce definitions and notation to be used throughout the paper.
Let [n] be the set of integers from one to n and Zp the ring of integers modulo

p, where p is an odd prime number, and we denote Zp \{0} by Z∗p. We consider
a set U = {0, 1, . . . , p− 1} of exponents of all monomials in Zp[x]/(xp−x). We
define an operation ⊕ of U as follows: for u, v ∈ U,

xuxv = xu⊕v.

From the relation xp = x, we see that 0 ⊕ 0 = 0 and u ⊕ v is the modulo
(p − 1) representative of u + v in U if u and v are not both 0. We point out
that it is not generally true that u + v = u ⊕ v; it however holds when u + v
is contained in U, that is, u + v ≤ p− 1. We extend ⊕ to Un which operates
component-wise. For u ∈ Un and i ∈ [n],

πi : Un → U

is a projection mapping from u to the i-th component of u.



CHARACTERIZATION OF CERTAIN TYPES OF r-PLATEAUED FUNCTIONS 1471

A p-ary function f in n variable is a function from Znp to Zp, which is uniquely
expressed by

f(x) =
∑

u∈Un

auxu =
∑

u∈Un

aux
u1
1 xu2

2 · · ·xunn ,

where x = (x1, x2, . . . , xn), u = (u1, u2, . . . , un) ∈ Un and au ∈ Zp.
We define a subset Uf of Un to be

Uf := {u ∈ Un | au 6= 0}.

The lexicographic order � on Uf is defined by u � v for u,v ∈ Uf if
πi(u) < πi(v) for the first i in which πi(u) and πi(v) differ. The degree of f ,
denoted by deg f or deg(f), is max{

∑n
i=1 πi(u) | u ∈ Uf}.

The following lemma whose proof is obvious, plays a crucial role in the paper.

Lemma 2.1. Let u,v ∈ Un. If πi(u) + πi(v) ≤ p − 1 for i ∈ [n], then
u⊕ v = u + v and deg xu⊕v = deg xu + deg xv.

Let d be the degree of a p-ary function f in n variables. A subset Ud
f of Uf

is defined by

Ud
f = {u ∈ Uf |

n∑
i=1

πi(u) = d}.

Then Ud
f is written as

Ud
f = {uk1 ,uk2 , . . . ,uks},

where uk1 ≺ · · · ≺ uks−1 ≺ uks .
We define the subclass An of p-ary functions in n variables as follows.

Notation 2.2.

An = {f : Znp → Zp | πi(u) ≤ p− 1

2
,∀i ∈ [n],∀u ∈ Uf}.

Lemma 2.3. Let f be a p-ary function in An. If u,v ∈ Uf , then

deg(xu⊕v) =

n∑
i=1

πi(u⊕ v) =

n∑
i=1

(πi(u) + πi(v)) = deg xu + deg xv.

The complex-valued function Sf of a p-ary function f in n variables, called
the Walsh-Hadamard transform of f , is defined by

Sf (c) =
∑
x∈Znp

ζf(x)−c·xp ,

where ζp is a primitive p-th root of unity. A p-ary function f in n variables
is called r-plateaued if |Sf (c)|2 ∈ {0, pn+r} for any c ∈ Znp , where r is an
integer between 0 and n. We note that a p-ary bent function f in n variables
is 0-plateaued. In this case, |Sf (c)|2 = pn for any c ∈ Znp .
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The authors proved in [5] that if f is an r-plateaued function in n variables,
then the degree of f is at most

(p− 1)
n− r

2
+ 1,(2)

except for the case p = 3 and n = 1; we will say that f has maximum degree
if f is of degree (p − 1)n−r2 + 1. From this bound we see that n-plateaued
functions are affine, and they are of the form a1x1 + a2x2 + · · · + anxn + ε,
where ε, ai ∈ Zp (i = 1, 2, . . . , n).

We say that p-ary functions f and g in n variables are extended affine equiv-
alent (for short, EA-equivalent) if

g(x) = cf(L(x) + u) + v · x + e

for some c ∈ Z∗p, e ∈ Zp, u, v ∈ Znp and a linear bijective function L from Znp to
itself. In particular, f is r-plateaued if and only if g is r-plateaued.

Let ω : Zp → Fp be a Teichmüller character, where Fp is the p-adic integer
ring and ω(x) is the unique solution of ω(x)p = ω(x) in Fp with ω(x) ≡ x
(mod p). The Gauss sum g(t) of ω for t ∈ Z/(p− 1)Z is defined by

g(t) = −
∑
x∈Z∗

p

ω(x)−tζxp .

We define G(t) for t ∈ Z/(p− 1)Z associated with the Gauss sum to be

G(t) =


1 if t = 0,
p

1−p if t = p− 1,
g(t)
1−p if 0 < t < p− 1.

The following proposition plays an important role in proving our main re-
sults.

Proposition 2.4 ([4, Theorem 4.1]). Let p be an odd prime and ε a non-
negative real number. For a p-ary function f(x) =

∑m
i=1 aix

ui with ai ∈ Z∗p,
we define

(3) hf (u) =
∑

0≤ti≤p−1
t1u1⊕···⊕tmum=u

G(t1)G(t2) · · ·G(tm)ω(at11 a
t2
2 · · · atmm ).

Then the following conditions are equivalent:

(1) vp(Sf (c)) ≥ ε for all c ∈ Znp .

(2) vp(hf (u)) ≥ ε− n+ 1
p−1

∑n
i=1 πi(u) for all u ∈ Un,

where vp denotes by the p-adic valuation.

Remark 2.5. We note that if f is a p-ary r-plateaued function in n variables,
then vp(Sf (c)) ≥ n+r

2 for all c ∈ Znp . Therefore, f satisfies the condition (1) in
Proposition 2.4. Furthermore, we have [4] that

vp

(
G(t1)G(t2) · · ·G(tm)ω(at11 a

t2
2 · · · atmm )

)
=
t1 + t2 + · · ·+ tm

p− 1
.(4)
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3. Classification of (n − 1)-plateaued functions

In this section we completely classify all p-ary (n − 1)-plateaued functions
in n variables (Theorem 3.1). We first prove that if f is a p-ary (n − 1)-
plateaued function in An, then it is actually quadratic (Lemma 3.2), and then
we show that there is no (n− 1)-plateaued function which is not contained in
An (Lemmas 3.5 and 3.6).

Theorem 3.1. Let p be an odd prime and f a p-ary (n−1)-plateaued function
in n variables. Then f is EA-equivalent to ax21 for a ∈ Z∗p.

We provide the proof of Theorem 3.1 at the end of this section.

Claim 1: Any (n − 1)-plateaued function in An is quadratic

We start with remark that since a p-ary (n − 1)-plateaued function in n

variables has maximum degree p+1
2 (see (2)), any term x

p+1
2

i for i ∈ [n] does
not appear in f as a monomial if and only if f ∈ An.

Lemma 3.2. Let p be an odd prime and f a p-ary (n−1)-plateaued function in

n variables. If any term x
p+1
2

i for i ∈ [n] does not appear in f as a monomial,
that is, f ∈ An, then

f(x) =

n∑
i,j=1

aijxixj ,

where aij’s are contained in Zp.

Proof. It follows from (1), we get that

f(x) =

n∑
i=1

aix
2
i +

∑
u∈{0,1}n

buxu,

where ai and bu belong to Z∗p. We assume that f is not quadratic, that is,
there is u0 ∈ {0, 1}n ∩ Uf with deg xu0 ≥ 3. Without loss of generality, we
may set xu0 = x1x2x3 · · ·xd, where d = deg xu0 . We consider a linear bijective
function L defined by

L(x1, x2, x3, . . . , xn) = (x1, x1 + x2, x3, . . . , xn).

Then f ◦L is an (n− 1)-plateaued function and any term x
p+1
2

i for i in [n] does
not appear in f◦L as a monomial. Applying (1) to f◦L leads to a contradiction.
This is because L transforms x1x2x3 · · ·xd into x1(x1 + x2)x3 · · ·xd, so f ◦ L
contains the monomial x21x3 · · ·xd. �



1474 J. Y. HYUN, J. LEE, AND Y. LEE

Claim 2: There is no (n − 1)-plateaued function which does not
belong to An

We will work on the case that a term x
p+1
2

i appears in f as a monomial
for some i ∈ [n]. We prove using Lemmas 3.5(iii) and 3.6 that there is no
(n− 1)-plateaued function which is not in An.

Lemma 3.3. Let p be an odd prime and f a p-ary (n− 1)-plateaued function

in n variables. Let at least one of the terms x
p+1
2

i for i ∈ [n] appear in f as a
monomial. Then the following statements are true.

(i) f is EA-equivalent to f̃ with

f̃(x) = ax
p+1
2

1 + g2(x2, . . . , xn)x
p−3
2

1 + · · ·+ g p+1
2

(x2, . . . , xn),

where gt ∈ Zp[x2, . . . , xn] for t = 2, 3, . . . , p+1
2 .

(ii) For u0 = (p+1
2 , 0, . . . , 0) ∈ Uf̃ and u ∈ Uf̃ with u 6= u0, we have that

πi(u) + πi(u0) ≤ p − 1 (i = 1, 2, . . . , n), which implies u ⊕ u0 = u + u0 and
deg(xu⊕u0) = deg xu + deg xu0 .

Proof. (i) Without loss of generality, we may assume that f contains x
p+1
2

1 as
a monomial. By expanding f in terms of x1, we have that

f(x) = ax
p+1
2

1 + h1(x2, . . . , xn)x
p−1
2

1

+ h2(x2, . . . , xn)x
p−3
2

1 + · · ·+ h p+1
2

(x2, . . . , xn),

where a ∈ Z∗p and ht ∈ Zp[x2, . . . , xn] for t = 1, 2, . . . , p+1
2 . The degree of h1

is at most one because deg f = p+1
2 . Consider a linear bijective function L̃

defined by

L̃(x1, x2, . . . , xn) =
(
x1 − ā

p+ 1

2
h1(x2, . . . , xn), x2, . . . , xn

)
,

where ī ∈ Z∗p for i ∈ Z∗p is the unique element such that īi ≡ 1 (mod p). Then

f is equivalent to f ◦ L̃, and the first part is proved by putting f̃ = f ◦ L̃.
(ii) Let u ∈ Uf̃ with u 6= u0(= (p+1

2 , 0, . . . , 0)). It follows from the first

result of this lemma that u0 =
(
p+1
2 , 0 . . . , 0

)
∈ Uf̃ and π1(u) ≤ p−3

2 . We also

have that πi(u0) = 0 and πi(u) ≤ p+1
2 for i = 2, 3, . . . , n. From this observation

and Lemma 2.1 the second part follows. �

From now on, we work on f̃ defined in Lemma 3.3. Let Uf̃ = {u1,u2, . . . ,um}.
Recall from Preliminary that

Udeg f̃

f̃
= {uk1 ,uk2 , . . . ,uks},

where uk1 ≺ uk2 ≺ · · · ≺ uks .
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Remark 3.4. (i) We point out that uks = (p+1
2 , 0, . . . , 0), uks ⊕ uks−1

= uks +

uks−1
and deg(xuks⊕uks−1 ) = p+ 1 using Lemma 2.1.

(ii) It is easy to verify that if uα � uβ and uγ � uδ, then uα+uγ � uβ+uδ,
and if uα + uβ � 2uβ , then uα � uβ .

Lemma 3.5. Let f̃ be a p-ary r-plateaued function in n variables defined in
Lemma 3.3. Then the following statements are true.

(i) With the previous setting, the equation uks ⊕ uks−1
= t1u1 ⊕ t2u2 ⊕

· · · ⊕ tmum satisfying t1 + t2 + · · · + tm = 2 has only one trivial solution as
tks = 1 = tks−1 , that is,

vp(hf̃ (uks−1 ⊕ uks)) =
2

p− 1
,

which is also true when ks−1 is replaced by kj for j 6= s.

(ii) The highest degree term of f̃ is just a single term x
p+1
2

1 .
(iii)

f̃(x) = ax
p+1
2

1 + h(x1, x2, . . . , xn),

where a ∈ Z∗p and deg h ≤ 1.

Proof. Put U∗
f̃

= {u ∈ Uf̃ | πi(u) ≤ p−1
2 , i ∈ [n]}.

(i) Assume that uks ⊕ uks−1
= uα ⊕ uβ for 1 ≤ α ≤ β ≤ m. It is sufficient

to show that (α, β) = (ks−1, ks). The proof is divided into two parts.
Case I: One of uα and uβ is not in U∗

f̃
.

If uα = uks , then our claim is obviously true by using Lemma 3.3. Now, we
assume that uα = (0, . . . , p+1

2 , . . . , 0). Using π1(uα) = 0 and Lemma 3.3, we
see that

p+ 1

2
= deg f̃ ≥ π1(uβ) = π1(uα ⊕ uβ)

= π1(uks ⊕ uks−1
)

= π1(uks + uks−1
) =

p+ 1

2
+ π1(uks−1) ≥ p+ 1

2
,

which implies π1(uβ) = p+1
2 , and so πi(uβ) = 0 for i = 2, . . . , n due to the

degree of f̃ . It follows that uβ = uks . By the assumption, we have uα = uks−1

and the first case is completed.
Case II: Both uα and uβ are in U∗

f̃
. In this case, uα ⊕ uβ = uα + uβ .

Assume, in contrary, that (α, β) 6= (ks−1, ks). Notice that

deg xuα + deg xuβ = deg(xuα⊕uβ ) = deg(xuks⊕uks−1 ) = p+ 1.

Here, the first equality follows from Lemma 2.1 using uα,uβ ∈ U∗f , and the last

equality follows from Remark 3.4. It then follows from deg xuα , deg xuβ ≤ p+1
2

that uα and uβ belong to U
p+1
2

f̃
, so that uα,uβ � uks−1 . Using Remark 3.4,

we derive that uks−1
+ uks = uα + uβ � 2uks−1

, or uks � uks−1
, which is a
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contradiction. This proves the first part of (i). The second part follows from
(4).

(ii) Assuming, in contrary, we have that there are at least two distinct ele-

ments in U
p+1
2

f̃
, say uks−1 and uks . From Lemma 3.5(i), Proposition 2.4 and

Remark 3.4, we see that

2

p− 1
= vp(hf̃ (uks−1

⊕ uks))

≥ 2n− 1

2
− n+

1

p− 1

n∑
i=1

πi(uks−1 ⊕ uks) = −1

2
+
p+ 1

p− 1
,

which is a contradiction.
(iii) It is sufficient to prove that the second highest degree of f̃ is less than

or equal to 1. Let Uf̃ = {v1,v2, . . . ,vm}, where deg xv1 ≤ deg xv2 ≤ · · · ≤
deg xvm . Then vm = (p+1

2 , 0, . . . , 0) and xvm is only one monomial term of f̃

with degree p+1
2 by (ii). We claim that

vp(hf̃ (vm ⊕ vm−1)) =
2

p− 1
.

As in (i) we show that if vm⊕vm−1 = vα⊕vβ for 1 ≤ α ≤ β ≤ m, then (α, β) =
(m−1,m). Obviously, if one of vα and vβ is not in U∗

f̃
, then (α, β) = (m−1,m).

It remains to consider the case that both vα and vβ belong to U∗
f̃
. Assume, in

contrary, that (α, β) 6= (m− 1,m). Then deg xvα , deg xvβ ≤ deg xvm−1 . By a
similar argument as in (i), we have that

deg xvm + deg xvm−1 = deg(xvm⊕vm−1)

= deg(xvα⊕vβ )

= deg xvα + deg xvβ ≤ 2 deg xvm−1 ,

or deg xvm = deg xvm−1 , which contradicts that xvm is only one monomial term
of f with degree p+1

2 . This proves the claim. It thus follows from Proposition
2.4 that

2

p− 1
≥ 2n− 1

2
− n+

1

p− 1

(p+ 1

2
+ deg xvm−1

)
,

or deg xvm−1 ≤ 1. This completes the proof. �

Lemma 3.6. Let p ≥ 5 be a prime. Then a p-ary function f in n variables
defined by

f(x) = ax
p+1
2

1 +

n∑
i=1

bixi (a 6= 0, bi ∈ Zp)

cannot be (n− 1)-plateaued.

Proof. Let j be a primitive root modulo p. Since

Z∗p = {x2 | x ∈ Z∗p} ∪ {jx2 | x ∈ Z∗p},
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we get that for a ∈ Z∗p,∑
x∈Zp

ζax
p+1
2 −ax

p =
1

2

( ∑
x∈Zp

ζa(x
2)
p+1
2 −ax2

p +
∑
x∈Zp

ζa(jx
2)
p+1
2 −ajx2

p

)
.

From

(x2)
p+1
2 ≡ x2 (mod p) and j

p+1
2 ≡ −j (mod p),

we see that ∑
x∈Zp

ζa(x
2)
p+1
2 −ax2

p = p

and ∑
x∈Zp

ζa(jx
2)
p+1
2 −ajx2

p =
∑
x∈Zp

ζ−2jax
2

p .

It is known that for a ∈ Z∗p,∑
x∈Zp

ζ−2jax
2

p =

{
±√p if p ≡ 1 (mod 4),

±
√
−p if p ≡ 3 (mod 4).

We may assume that f(x) = ax
p+1
2

1 for a ∈ Z∗p up to EA-equivalence. Conse-
quently,

we get that

Sf (a, 0, . . . , 0) =

{
1
2 (p±√p)pn−1 if p ≡ 1 (mod 4),
1
2 (p±

√
−p)pn−1 if p ≡ 3 (mod 4).

(5)

We find from (5) that if p ≥ 5, then

|Sf (a, 0, . . . , 0)|2 6= p2n−1.

Thus f(x) = ax
p+1
2

1 with a ∈ Z∗p cannot be an (n− 1)-plateaued function. �

Proof of Theorem 3.1

First of all, the case of p = 3 follows from (2). Assume the case of p ≥ 5.
Combining Lemma 3.3(i), Lemma 3.5(iii) and Lemma 3.6, we get that every
(n − 1)-plateaued function f should be contained in An. In Lemma 3.2, we
proved that any (n− 1)-plateaued function f in An is

f(x) =

n∑
i,j=1

aijxixj ,

where aij ’s are contained in Zp. We note that every quadratic form f(x) =∑
1≤i≤j≤n aijxixj for aij in Zp is transformed to a diagonal quadratic form

d1x
2
1 + d2x

2
2 + · · · + dnx

2
n. Moreover, it follows from Proposition 1 of [3] that

every (n − 1)-plateaued diagonal quadratic form is dix
2
i , which completes the

proof.
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4. Properties of r-plateaued functions in An

In this section, we prove that if f is a p-ary r-plateaued function in n vari-
ables contained in An with deg f > 1+ n−r

4 (p−1), then the highest degree term

of f is just a single term and the other terms have degree≤ 2+n−r
2 (p−1)−deg f .

Lemma 4.1. Let p be an odd prime, f a p-ary function in An and Uf =
{v1,v2, . . . ,vm}. Then the following statements are true.

(i) If Udeg f
f = {uk1 ,uk2 , . . . ,uks}, where uk1 ≺ · · · ≺ uks−1 ≺ uks contains

at least two elements, then vp(hf (uks−1
⊕ uks)) = 2

p−1 .

(ii) If Udeg f
f contains exactly one element, then vp(hf (vm−1 ⊕ vm)) = 2

p−1 ,

where deg xv1 ≤ deg xv2 ≤ · · · ≤ deg xvm .

Proof. It is proved by similar arguments as in Lemma 3.5. �

Theorem 4.2. Let p be an odd prime and f a p-ary r-plateaued function in
An. If deg f > 1 + n−r

4 (p−1), then the highest degree term of f is a monomial

and the other terms have degree ≤ 2 + n−r
2 (p− 1)− deg f. That is,

f(x) = axu + g(x1, x2, . . . , xn),

where a ∈ Z∗p, deg xu = deg f and deg g ≤ 2 + n−r
2 (p− 1)− deg f .

Proof. Let Uf = {u1,u2, . . . ,um} and d = deg f . Recall from Preliminary
that Ud

f = {uk1 ,uk2 , . . . ,uks}, where uk1 ≺ uk2 ≺ · · · ≺ uks . First, we prove

that Ud
f contains only one element. Assuming, in contrary, Ud

f contains at
least two distinct elements. It then follows from Lemma 2.3 that

n∑
i=1

πi(uks ⊕ uks−1
) =

n∑
i=1

(
πi(uks) + πi(uks−1

)
)

= 2d

and from Lemma 4.1(i) that

vp(hf (uks ⊕ uks−1)) =
2

p− 1
.

Proposition 2.4 implies that

2

p− 1
≥ n+ r

2
− n+

1

p− 1

n∑
i=1

πi(uks ⊕ uks−1
) = −n− r

2
+

2d

p− 1
,

which is a contradiction to the condition of deg f , and so the claim is proved.
That is, the highest degree term of f is a single monomial.

Now, we prove that the second highest degree is ≤ 2 + n−r
2 (p − 1) − d.

Let Uf = {v1,v2 . . . ,vm}, where deg xv1 ≤ · · · ≤ deg xvm−1 ≤ deg xvm . By
Lemma 4.1(ii), we have

vp(hf (vm ⊕ vm−1)) =
2

p− 1
.
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Using
∑n
i=1 πi(vm⊕vm−1) = d+ deg xvm−1 (see Lemma 2.3) and from Propo-

sition 2.4 lead to
2

p− 1
≥ n+ r

2
− n+

1

p− 1

(
d+ deg xvm−1

)
.

The second claim follows from deg xvm−1 = deg g, and the proof is completed.
�

Recall that every r-plateaued function f in n variables has the degree less
than or equal ton−r2 (p− 1) + 1.

Lemma 4.3. If a monomial axu for a ∈ Z∗p and u ∈ Un is an r-plateaued
function in An, then

deg xu ≤ n− r
4

(p− 1) + 1.

Proof. Let f(x) = axu. Then we can check that vp(hf (2u)) = 2
p−1 and∑n

i=1 πi(2u) = 2
∑n
i=1 πi(u). By Proposition 2.4, we see that

2

p− 1
≥ n+ r

2
− n+

2

p− 1
deg xu,

and the result follows. �

Using Theorem 4.2 and Lemma 4.3 we prove that there is no r-plateaued
function in An with maximum degree.

Corollary 4.4. Let p be an odd prime, f an r-plateaued function in An. Then

deg f ≤ n− r
2

(p− 1).

Proof. Assume that f is an r-plateaued function in An with the degree n−r
2 (p−

1) + 1. It follows from Theorem 4.2 that f is written as

f(x) = axu + g(x1, x2, . . . , xn),

where a ∈ Z∗p, deg xu = n−r
2 (p − 1) + 1 and deg g ≤ 1. Thus axu ia also

r-plateaued, which is a contradiction to Lemma 4.3. �

We strengthen Theorem 4.2 for r-plateaued functions in An as follows.

Corollary 4.5. Let p be an odd prime ≥ 5. If f is an r-plateaued function in
An with deg f ≥ 2 + n−r−1

2 (p − 1), then deg f > n. This implies that when

2 + n−r−1
2 (p− 1) ≤ n, there is no p-ary (n− 1)-plateaued function in An with

its degree between 1 + n−r−1
2 (p− 1) and n+ 1.

Proof. By Theorem 4.2, we may write f as

f(x) = axu + g(x1, x2, . . . , xn),

where a ∈ Z∗p, deg g ≤ 2+ n−r
2 (p−1)−deg f and deg xu = deg f . The Hamming

weight of u in Z∗p is the number of nonzero coordinate positions, denoted by
|u|.
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We claim that (i) |u| = n and so deg f = deg xu ≥ n and (ii) deg f 6=
n. First, we consider |u| < n to drive a contradiction. Then there is k ∈
{1, 2, . . . , n} such that πk(u) = 0. For the simplicity of arguments, we assume
π1(u) 6= 0 and k 6= 1. We consider a linear transform L1 defined by

L1(x1, x2, . . . , xn) = (x1 + xk, x2, . . . , xn).

Then xu = xu1
1 xu2

2 · · ·xunn is transformed by L1 into
u1∑
i=0

(
u1
i

)
xu1−i
1 xikx

u2
2 · · ·x

uk−1

k−1 x
uk+1

k+1 · · ·x
un
n ,

which is also in An by noticing that every exponent of

xu1−i
1 xikx

u2
2 · · ·x

uk−1

k−1 x
uk+1

k+1 · · ·x
un
n

for i = 0, 1, . . . , u1 is at most p−1
2 because f is in An. From the degree bounds

of f and g we derive that deg g ≤ p−1
2 . Those two observations imply that

f ◦ L1 is in An, and it has at least two monomials with highest degree, which
is a contradiction to Theorem 4.2.

Now we consider deg xu = n. By Theorem 4.2, we may write f as

f(x) = ax1x2 · · ·xn + g(x1, x2, . . . , xn),

where a ∈ Z∗p and deg g ≤ p−1
2 . We consider a linear transform L2 defined by

L2(x1, x2, . . . , xn) = (x1 + x2, x2, . . . , xn).

We notice that f ◦ L2 ∈ An whenever p ≥ 5. The same arguments as above
yield a contradiction. This completes the proof. �

Let f be a p-ary function in An with Uf = {u1,u2, . . . ,um}. Let us take
the maximum value of {πj(ui)}1≤i≤m,1≤j≤n, say π`(uk), called the maximal
exponent of f and denoted it by ef . Now, we choose a permutation σ in the
permutation group Sn sending ` to 1. We set

U�σf = {vi ∈ Uσf | i = 1, 2, . . . ,m}

imposed the lexicographic order �. We point out that π1(vm) = ef . Let

s =
⌊
p−1
ef

⌋
, where btc is the least integer lager than or equal to t. It follows

from Lemma 12 in [5] that

vp(hf (svm)) =
s

p− 1
.

Proposition 2.4 implies that

vp(hf (svm)) =
s

p− 1
≥ −n− r

2
+

s

p− 1

n∑
i=1

πi(vm),

or
n∑
i=1

πi(vm) ≤ 1 +
n− r

2

p− 1

s
.
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With the previous discussion, we have the following lemma.

Lemma 4.6. Let p be an odd prime, f a p-ary r-plateaued function in n

variables and s =
⌊
p−1
ef

⌋
. Let u ∈ Uf with π1(u) = ef be the maximal element

of Uf which is imposed the lexicographic order �. Then

n∑
i=1

πi(u) ≤ 1 +
n− r

2

p− 1

s
.

5. Application: partial classification of (n − 2)-plateaued functions

In this section, we partially classify all (n − 2)-plateaued functions in An
when p = 3, 5 and 7, and p-ary bent functions in A2 are completely classified
for the cases p = 3 and 5.

Proposition 5.1. The following statements are true.
(i) Every ternary (n− 2)-plateaued function in An is quadratic.
(ii) The degree of every 5-ary (n − 2)-plateaued function in An is at most

three. In particular, every bent function in A2 is quadratic.
(iii) The degree of every 7-ary (n− 2)-plateaued function An is at most five.

In particular, the degree of every bent function in A2 is at most four.

Proof. (i) It is a direct consequence of Corollary 4.4.
(ii) Let f be a 5-ary (n− 2)-plateaued function in An. Using Corollary 4.4,

the degree of f is at most four. If f is of degree four, then we get from Corollary
4.5 that n < 4. We thus obtain the following table: For a ∈ Z∗5 and deg g ≤ 2

n f ∈ An with degree 4 u maximal element of Uf

2 ax21x
2
2 + g(x1, x2) (2, 2)

3 ax21x2x3 + g(x1, x2, x3) (2, 1, 1)

By Lemma 4.6 with π1(u) = ef = 2 in both cases of the table, we have that
4 =

∑n
i=1 πi(u) ≤ 3, which is a contradiction. This proves the first part of (ii).

The second part of (ii) follows by using Mathematica program.
(iii) Let f be a 7-ary (n− 2)-plateaued function in An. Using Corollary 4.4,

the degree of f is at most six. If f is of degree six, then we find from Corollary
4.5 that n < 6. Hence, we obtain the following table: For a ∈ Z∗7 and deg g ≤ 2

n f ∈ An with degree 6 u maximal element of Uf

2 ax31x
3
2 + g(x1, x2) (3, 3)

3 ax21x
2
2x

2
3 + g(x1, x2, x3) (2, 2, 2)

3 ax31x
2
2x3 + g(x1, x2, x3) (3, 2, 1)

4 ax21x
2
2x3x4 + g(x1, x2, x3, x4) (2, 2, 1, 1)

4 ax31x2x3x4 + g(x1, x2, x3, x4) (3, 1, 1, 1)
5 ax21x2x3x4x5 + g(x1, x2, x3, x4, x5) (2, 1, 1, 1, 1)



1482 J. Y. HYUN, J. LEE, AND Y. LEE

By Lemma 4.6 with π1(u) = ef = 2 (respectively, 3) in the table, we have
that 6 =

∑n
i=1 πi(u) ≤ 3 (respectively, ≤ 4) which is a contradiction. This

proves the first part of (iii).
Now we prove that the degree of every bent function in A2 is at most four.

Let f be a 7-ary bent function in A2 with degree five. Then by Theorem 4.2,
it is written as

f(x) = ax3y2 + g(x, y),

where a ∈ Z7
∗ and deg g ≤ 3. By Lemma 4.6 with π1(u) = ef = 3 for

the maximal element u ∈ Uf , we have that 5 =
∑2
i=1 πi(u) ≤ 4, which is a

contraction, and the proof is completed. �
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