• Title/Summary/Keyword: R module

Search Result 1,037, Processing Time 0.033 seconds

ON COFINITELY CLOSED WEAK δ-SUPPLEMENTED MODULES

  • Sozen, Esra Ozturk
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2020
  • A module M is called cofinitely closed weak δ-supplemented (briefly δ-ccws-module) if for any cofinite closed submodule N of M has a weak δ-supplement in M. In this paper we investigate the basic properties of δ-ccws modules. In the light of this study, we can list the main facts obtained as following: (1) Any cofinite closed direct summand of a δ-ccws module is also a δ-ccws module; (2) Let R be a left δ-V -ring. Then R is a δ-ccws module iff R is a ccws-module iff R is extending; (3) Any nonsingular homomorphic image of a δ-ccws-module is also a δ-ccws-module; (4) We characterize nonsingular δ-V -rings in which all nonsingular modules are δ-ccws.

Travel Time Models of a Hybrid Automated Storage/Retrieval Module for Small and Medium-Sized Enterprises (중소기업용 혼합형 자동창고에 대한 주행시간 모형)

  • Lee, Moon-Kyu
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.52-61
    • /
    • 2004
  • During the past decades automated storage/retrieval (AS/R) systems have been dominantly implemented in most industrial fields due to their handling efficiency and high utilization of storage space. Such AS/R systems consist of several modules each of which contains two racks and a S/R machine. This paper proposes a design of the hybrid AS/R module which can be adopted without too much initial expenditure by most of small-and-medium sized companies. The hybrid module consists of an AS/R module on the upper floor and a traditional warehouse module on the lower floor. For the AS/R module, analytical expressions of the expected travel times for the S/R machine and the elevator per operation are derived. The expected travel times represent the performance of the module and thus can be used for its economic design.

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

ON SUBDIRECT PRODUCT OF PRIME MODULES

  • Dehghani, Najmeh;Vedadi, Mohammad Reza
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.277-285
    • /
    • 2017
  • In the various module generalizations of the concepts of prime (semiprime) for a ring, the question "when are semiprime modules subdirect product of primes?" is a serious question in this context and it is considered by earlier authors in the literature. We continue study on the above question by showing that: If R is Morita equivalent to a right pre-duo ring (e.g., if R is commutative) then weakly compressible R-modules are precisely subdirect products of prime R-modules if and only if dim(R) = 0 and R/N(R) is a semi-Artinian ring if and only if every classical semiprime module is semiprime. In this case, the class of weakly compressible R-modules is an enveloping for Mod-R. Some related conditions are also investigated.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

COMMUTATIVE RINGS AND MODULES THAT ARE r-NOETHERIAN

  • Anebri, Adam;Mahdou, Najib;Tekir, Unsal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1221-1233
    • /
    • 2021
  • In this paper, we introduce and investigate a new class of modules that is closely related to the class of Noetherian modules. Let R be a commutative ring and M be an R-module. We say that M is an r-Noetherian module if every r-submodule of M is finitely generated. Also, we call the ring R to be an r-Noetherian ring if R is an r-Noetherian R-module, or equivalently, every r-ideal of R is finitely generated. We show that many properties of Noetherian modules are also true for r-Noetherian modules. Moreover, we extend the concept of weakly Noetherian rings to the category of modules and we characterize Noetherian modules in terms of r-Noetherian and weakly Noetherian modules. Finally, we use the idealization construction to give non-trivial examples of r-Noetherian rings that are not Noetherian.

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID

  • Cho, Eunha;Jeong, Jinsun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • Let M be a left R-module and R be a ring with unity, and $S=\{0,2,3,4,{\ldots}\}$ be a submonoid. Then $M[x^{-s}]=\{a_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ is an $R[x^s]$-module. In this paper we show some properties of $M[x^{-s}]$ as an $R[x^s]$-module. Let $f:M{\rightarrow}N$ be an R-linear map and $\overline{M}[x^{-s}]=\{a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ and define $N+\overline{M}[x^{-s}]=\{b_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}b_0{\in}N,\;a_i{\in}M}$. Then $N+\overline{M}[x^{-s}]$ is an $R[x^s]$-module. We show that given a short exact sequence $0{\rightarrow}L{\rightarrow}M{\rightarrow}N{\rightarrow}0$ of R-modules, $0{\rightarrow}L{\rightarrow}M[x^{-s}]{\rightarrow}N+\overline{M}[x^{-s}]{\rightarrow}0$ is a short exact sequence of $R[x^s]$-module. Then we show $E_1+\overline{E_0}[x^{-s}]$ is not an injective left $R[x^s]$-module, in general.

A Note on c-Separative Modules

  • Chen, Huanyin
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.357-361
    • /
    • 2007
  • A right R-module P is $c$-separative provided that $$P{\oplus}P{{c}\atop{\simeq_-}}P{\oplus}Q{\Longrightarrow}P{\simeq_-}Q$$ for any right R-module Q. We get, in this paper, two sufficient conditions under which a right module is $c$-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is $c$-separative.

  • PDF