• Title/Summary/Keyword: R%26D Process

Search Result 130, Processing Time 0.038 seconds

Synthesis and Durability of Carbon-Supported Catalysts for PEMFC (내구성 향상을 위한 연료전지 촉매 개발)

  • YI, MI HYE;CHOI, JIN SUNG;RHO, BUMWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to improve durability of MEA and electrocatalysts. Regarding electrocatalysts, the major issue is to reduce carbon corrosion and dissolution of Pt caused by harsh conditions, for example, SU/SD (Start-up/Shut-down). In this research, OER (Oxygen Evolution Reaction) catalyst has been developed improvement of durability. A modified polyol process is developed by controlling the pH of the solvent to synthesize the PtIr nanocatalysts on carbon supports. Each performance of the MEAs applying PtIr and Pt are equivalent because PtIrnanocatalysts have both ORR and OER activity. Breadboard test for catalyst durability in harsh conditions and high potentialsis found that the MEA applying PtIrnanocatalysts durability is improved more than the MEA applying Pt nanocatalysts.

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

Effect of Temperature on the Charpy Impact and CTOD Values of Type 304 Stainless Steel Pipeline for LNG Transmission

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kho, Young-Tai
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1064-1071
    • /
    • 2002
  • Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to -162$^{\circ}C$ The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to -162$^{\circ}C$ .

Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor

  • Kim, Z-Hun;Park, Hanwool;Lee, Ho-Sang;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1285-1289
    • /
    • 2016
  • A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment (후열처리에 의한 알루미늄 산화층의 특성 향상)

  • Jeon, Yoonnam;Kim, Sangjun;Park, Jihyun;Jeong, Nagyeom
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

Novel Robust Structure and High k Dielectric Material for 90 nm DRAM Capacitor

  • Park, Y.K.;Y.S. Ahn;Lee, K.H.;C.H. Cho;T.Y. Chung;Kim, Kinam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2003
  • The robust stack storage node and sufficient cell capacitance for high performance is indispensable for 90 nm DRAM capacitor. For the first time, we successfully demonstrated MIS capacitor process integration for 90 nm DRAM technology. Novel cell layout and integration technology of 90 nm DRAM capacitor is proposed and developed, and it can be extended to the next generation DRAM. Diamond-shaped OCS with 1.8 um stack height is newly developed for large capacitor area with better stability. Furthermore, the novel $Al_2O_3/HfO_2$ dielectric material with equivalent oxide thickness (EOT) of 25 ${\AA}$ is adopted for obtaining sufficient cell capacitance. The reliable cell capacitance and leakage current of MIS capacitor is obtained with ~26 fF/cell and < 1 fA/ceil by $Al_2O_3/HfO_2$ dielectric material, respectively.

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu;Kim, Eun-jin;Kwon, Yong Rok;Kim, Jung Soo;Kim, Hae Chan;Park, Han Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.100-106
    • /
    • 2022
  • Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.

A Study on the Development of an Evaluation System for Water Resources Technology Research and Development Projects (수자원 확보기술개발사업의 가치평가 모형 구축에 관한 연구)

  • Kim, Hyun-Keong;Jeong, Da-Yeon;Heo, Eun-Nyeong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.783-791
    • /
    • 2007
  • In this study, an evaluation system for a water resources technology research and development project, which is one of the 21C frontier R&D programs sponsored by Korea Ministry of Science and Technology, is proposed. The purpose of this paper is to contribute in the implementation of an efficient R&D policy scheme and in the successful commercialization and diffusion of water resources technologies through proper evaluation of water resources technology R&D projects. The evaluation system is consisted of two levels of evaluation categories and attributes to reflect qualitative evaluation as well as quantitative evaluation of the water resources technology development. The weights of 4 evaluation categories and 26 attributes are calculated by using Analytic Hierarchy Process(AHP). To demonstrate the evaluation system, a numerical example of water resources technology evaluation is presented.

Biaxial Integrated Optical Film for VA Mode LCD's Made from In-situ Photopolymerised Reactive Mesogens

  • Kim, Kyeong-Hyeon;Lyu, Jae-Jin;Chung, Dong-Hoon;Verrall, M;Slaney, K;Perrett, T;Parri, O;Lee, Seung-Eun;Lee, Hee-Kyu
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.23-26
    • /
    • 2004
  • For high end, large area displays, all current LC modes require some degree of optical compensation to improve the front of screen viewing experience. Currently most optical films are laminated to the outside of the LCD cell, between the glass and polariser. In this paper we wish to show how it is possible to integrate the compensating optical film within a VA mode LCD cell. The paper will describe the process of making the biaxial film through the process of in-situ photopolymerisation of an aligned film of reactive mesogens in the cholesteric phase using polarised UV light. The film can be made on the colour filter array side of the LCD panel. In addition the process of fabricating a VA mode LCD containing this film will be described and the performance of this module will be presented.