Browse > Article
http://dx.doi.org/10.7473/EC.2022.57.3.100

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate  

Moon, Seok Kyu (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Eun-jin (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kwon, Yong Rok (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Jung Soo (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Hae Chan (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Park, Han Soo (School of Intergrative Engineering, Chung-Ang University)
Kim, Dong Hyun (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Publication Information
Elastomers and Composites / v.57, no.3, 2022 , pp. 100-106 More about this Journal
Abstract
Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.
Keywords
waterborne polyurethane-acrylate; crosslinker; mechanical properties; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Javadi, A. Cobaj, and M. D. Soucek, "Handbook of waterborne coatings", pp. 303-344, Elsevier, Amsterdam, 2020.
2 M. He, J. Xu, F. Qiu, and X. Chen, "Preparation, characterization, and property analysis of environmentally friendly waterborne polyurethane-acrylate", Int. J. Polym. Anal. Charact., 18, 211 (2013).   DOI
3 D. Kukanja, J. Golob, A. Zupancic-Valant, and M. Krajnc, "The structure and properties of acrylic-polyurethane hybrid emulsions and comparison with physical blends", J. Appl. Polym. Sci., 78, 67 (2000).   DOI
4 F. Yu, L. Cao, Z. Meng, N. Lin, and X. Y. Liu, "Crosslinked waterborne polyurethane with high waterproof performance", Polym. Chem., 7, 3913 (2016).   DOI
5 H. L. Kim, Y. H. Lee, J. S. Kim, C. C. Park, H. Park, H. H. Chun, and H. D. Kim, "Preparation and properties of crosslinkable waterborne polyurethane and polyurethane-acrylic hybrid emulsions and their crosslinked polymers", J. Polym. Res., 23, 1(2016).   DOI
6 J. Kajtna, J. Golob, and M. Krajnc, "The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives". Int. J. Adhes. Adhes., 29, 186 (2009).   DOI
7 W. Yin, X. Zeng, H. Li, Y. Hou, and Q. Gao, "Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions", J. Coat. Technol. Res., 8, 577 (2011).   DOI
8 L. Xu, Z. Wang, G. Yang, G. Zhang, H. Wei, H. Fang, and Y. Ding, "CO2-triggered hydrophobic/hydrophilic switchable waterborne polyurethane-acrylate with simultaneously improved water resistance and mechanical properties", J. Coat. Technol. Res., 18, 989 (2021).   DOI
9 Z. Liu, H. Chen, G. Hu, J. Wang, Y. Xin, C. Xiang, and Y. Zhou, "Excellent water resistance and mechanically robust waterborne polyurethane-acrylate based on dithiol post-chain extension", J. Coat. Technol. Res., 17, 1065 (2020).   DOI
10 H. M. C. C. Somarathna, S. N. Raman, D. Mohotti, A. A. Mutalib, and K. H. Badri, "The use of polyurethane for structural and infrastructural engineering applications: A state-ofthe-art review", Constr. Build. Mater., 190, 995 (2018).   DOI
11 H. Xu, F. Qiu, Y. Wang, D. Yang, W. Wu, Z. Chen, and J. Zhu, "Preparation, mechanical properties of waterborne polyurethane and crosslinked polyurethane-acrylate composite", J. Appl. Polym. Sci., 124, 958 (2012).   DOI
12 L. Wu, B. You, and D. Li, "Synthesis and characterization of urethane/acrylate composite latex", J. Appl. Polym. Sci., 84, 1620 (2002).   DOI
13 C. Wang, F. Chu, C. Graillat, A. Guyot, C. Gauthier, and J. P. Chapel, "Hybrid polymer latexes: acrylics-polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends", Polymer, 46, 1113 (2005).   DOI
14 Z. Liu, H. Chen, G. Hu, J. Wang, Y. Xin, C. Xiang, and Y. Zhou, "Excellent water resistance and mechanically robust waterborne polyurethane-acrylate based on dithiol post-chain extension", J. Coat. Technol. Res., 17, 1065 (2020).   DOI
15 P. J. Peruzzo, P. S. Anbinder, O. R. Pardini, J. Vega, C. A. Costa, F. Galembeck, and J. I. Amalvy, "Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems", Prog. Org. Coat., 72, 429 (2011).   DOI
16 Y. Deng, C. Zhou, Q. Zhang, M. Zhang, and H. Zhang, "Structure and performance of waterborne polyurethaneacrylate composite emulsions for industrial coatings: Effect of preparation methods", Colloid Polym. Sci., 298, 139 (2020).   DOI
17 M. M. Rahman, E. Y. Kim, J. Y. Kwon, H. J. Yoo, and H. D. Kim, "Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine," Int. J. Adhes. Adhes., 28, 47 (2008).   DOI
18 A. Asif, L. Hu, and W. Shi, "Synthesis, rheological, and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings", Colloid Polym. Sci., 287, 1041 (2009).   DOI
19 H. Xu, F. Qiu, Y. Wang, D. Yang, W. Wu, Z. Chen, and J. Zhu, "Preparation, mechanical properties of waterborne polyurethane and crosslinked polyurethane-acrylate composite", J. Appl. Polym. Sci., 124, 958 (2012).   DOI
20 G. A. Alvarez, M. Fuensanta, V. H. Orozco, and L. F. Giraldo, "Martin-Martinez, J. M. Hybrid waterborne polyurethane/ acrylate dispersion synthesized with bisphenol A-glicidylmethacrylate (Bis-GMA) grafting agent", Prog. Org. Coat., 118, 30 (2018).   DOI
21 D. E. Kim, S. O. Kang, and S. H. Lee, "Effect of NCO index on the particle size of polycarbonate diol-based polyurethane dispersion", Elast. Compos., 55, 20 (2020).   DOI
22 J. Xu, Y. Jiang, F. Qiu, Y. Dai, D. Yang, Z. Yu, and P. Yang, "Synthesis, mechanical properties and iron surface conservation behavior of UV-curable waterborne polyurethane-acrylate coating modified with inorganic carbonate", Polym. Bull., 75, 4713 (2018).   DOI
23 G. Chen, S. Ouyang, Y. Deng, M. Chen, Y. Zhao, W. Zou, and Q. Zhao, "Improvement of self-cleaning waterborne polyurethane-acrylate with cationic TiO2/reduced graphene oxide", RSC Adv., 9, 18652 (2019).   DOI
24 Y. Hu, C. Liu, Q. Shang, and Y. Zhou, "Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate", J. Coat. Technol. Res., 15, 77 (2018).   DOI
25 E. J. Kim, Y. R. Kwon, Y. W. Chang, and D. H. Kim, "Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane", Elast. Compos., 57, 13 (2022).
26 K. Li, Y. Shen, G. Fei, H. Wang, and J. Li, "Preparation and properties of castor oil/pentaerythritol triacrylate-based UV curable waterborne polyurethane acrylate", Prog. Org. Coat., 78, 146 (2015).   DOI