• Title/Summary/Keyword: Quotient ring

Search Result 98, Processing Time 0.03 seconds

ON LIFTING OF STABLE RANGE ONE ELEMENTS

  • Altun-Ozarslan, Meltem;Ozcan, Ayse Cigdem
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.793-807
    • /
    • 2020
  • Stable range of rings is a unifying concept for problems related to the substitution and cancellation of modules. The newly appeared element-wise setting for the simplest case of stable range one is tempting to study the lifting property modulo ideals. We study the lifting of elements having (idempotent) stable range one from a quotient of a ring R modulo a two-sided ideal I by providing several examples and investigating the relations with other lifting properties, including lifting idempotents, lifting units, and lifting of von Neumann regular elements. In the case where the ring R is a left or a right duo ring, we show that stable range one elements lift modulo every two-sided ideal if and only if R is a ring with stable range one. Under a mild assumption, we further prove that the lifting of elements having idempotent stable range one implies the lifting of von Neumann regular elements.

The *-Nagata Ring of almost Prüfer *-multiplication Domains

  • Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.587-593
    • /
    • 2014
  • Let D be an integral domain with quotient field K, $\bar{D}$ denote the integral closure of D in K and * be a star-operation on D. In this paper, we study the *-Nagata ring of AP*MDs. More precisely, we show that D is an AP*MD and $D[X]{\subseteq}\bar{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD.

ON PRINCIPAL IDEALS IN POLYNOMIAL RINGS

  • Chul Kon Bae;June Won Park
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 1995
  • Throughout this paper R will always denote an integral domain with the quotient field K. Let A denote the polynomial ring R[x], I be an ideal of $A, I_K = I \otimes_R K$ and $J = I_K \cap A$.

  • PDF

MORPHIC PROPERTY OF A QUOTIENT RING OVER POLYNOMIAL RING

  • Long, Kai;Wang, Qichuan;Feng, Lianggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1433-1439
    • /
    • 2013
  • A ring R is called left morphic if $$R/Ra{\simeq_-}l(a)$$ for every $a{\in}R$. Equivalently, for every $a{\in}R$ there exists $b{\in}R$ such that $Ra=l(b)$ and $l(a)=Rb$. A ring R is called left quasi-morphic if there exist $b$ and $c$ in R such that $Ra=l(b)$ and $l(a)=Rc$ for every $a{\in}R$. A result of T.-K. Lee and Y. Zhou says that R is unit regular if and only if $$R[x]/(x^2){\simeq_-}R{\propto}R$$ is morphic. Motivated by this result, we investigate the morphic property of the ring $$S_n=^{def}R[x_1,x_2,{\cdots},x_n]/(\{x_ix_j\})$$, where $i,j{\in}\{1,2,{\cdots},n\}$. The morphic elements of $S_n$ are completely determined when R is strongly regular.

THE KRONECKER FUNCTION RING OF THE RING D[X]N*

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.907-913
    • /
    • 2010
  • Let D be an integrally closed domain with quotient field K, * be a star operation on D, X, Y be indeterminates over D, $N_*\;=\;\{f\;{\in}\;D[X]|\;(c_D(f))^*\;=\;D\}$ and $R\;=\;D[X]_{N_*}$. Let b be the b-operation on R, and let $*_c$ be the star operation on D defined by $I^{*_c}\;=\;(ID[X]_{N_*})^b\;{\cap}\;K$. Finally, let Kr(R, b) (resp., Kr(D, $*_c$)) be the Kronecker function ring of R (resp., D) with respect to Y (resp., X, Y). In this paper, we show that Kr(R, b) $\subseteq$ Kr(D, $*_c$) and Kr(R, b) is a kfr with respect to K(Y) and X in the notion of [2]. We also prove that Kr(R, b) = Kr(D, $*_c$) if and only if D is a $P{\ast}MD$. As a corollary, we have that if D is not a $P{\ast}MD$, then Kr(R, b) is an example of a kfr with respect to K(Y) and X but not a Kronecker function ring with respect to K(Y) and X.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

HIGH DIMENSION PRUFER DOMAINS OF INTEGER-VALUED POLYNOMIALS

  • Cahen, Paul-Jean;Chabert, Jean-Luc;K.Alan Loper
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.915-935
    • /
    • 2001
  • Let V be any valuation domain and let E be a subset of the quotient field K of V. We study the ring of integer-valued polynomials on E, that is, Int(E, V)={f$\in$K[X]|f(E)⊆V}. We show that, if E is precompact, then Int(E, V) has many properties similar to those of the classical ring Int(Z).In particular, Int(E, V) is dense in the ring of continuous functions C(E, V); each finitely generated ideal of Int(E, V) may be generated by two elements; and finally, Int(E, V) is a Prufer domain.

  • PDF

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

  • De Filippis, Vincenzo;Fosner, Ajda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.885-898
    • /
    • 2012
  • Let m, n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : $R{\rightarrow}R$ be a skew derivation of R and $E(x)=D(x^{m+n+r})-D(x^m)x^{n+r}-x^mD(x^n)x^r-x^{m+n}D(x^r)$. We prove that if $E(x)=0$ for all $x{\in}L$, then D is a usual derivation of R or R satisfies $s_4(x_1,{\ldots},x_4)$, the standard identity of degree 4.

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.