• Title/Summary/Keyword: Quartic functional equation

Search Result 31, Processing Time 0.025 seconds

ON THE STABILITY OF AN AQCQ-FUNCTIONAL EQUATION

  • Park, Choonkil;Jo, Sung Woo;Kho, Dong Yeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.757-770
    • /
    • 2009
  • In this paper, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation (0.1) f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) - 6f(x) + f(2y) + f(-2y) - 4f(y) - 4f(-y) in Banach spaces.

  • PDF

ADDITIVE-QUARTIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN ORTHOGONALITY SPACES

  • Lee, Hyunju;Kim, Seon Woo;Son, Bum Joon;Lee, Dong Hwan;Kang, Seung Yeon
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.33-46
    • /
    • 2012
  • Using the direct method, we prove the Hyers-Ulam stability of the orthogonally additive-quartic functional equation (0.1) $f(2x+y)+f(2x-y)=4f(x+y)+4f(x-y)+10f(x)+14f(-x)-3f(y)-3f(-y)$ for all $x$, $y$ with $x{\perp}y$, in non-Archimedean Banach spaces. Here ${\perp}$ is the orthogonality in the sense of R$\ddot{a}$tz.

ON THE STABILITY OF THE GENERAL SEXTIC FUNCTIONAL EQUATION

  • Chang, Ick-Soon;Lee, Yang-Hi;Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • The general sextic functional equation is a generalization of many functional equations such as the additive functional equation, the quadratic functional equation, the cubic functional equation, the quartic functional equation and the quintic functional equation. In this paper, motivating the method of Găvruta [J. Math. Anal. Appl., 184 (1994), 431-436], we will investigate the stability of the general sextic functional equation.

A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE ∗-DERIVATIONS

  • Kang, Dongseung;Koh, Heejeong
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.587-600
    • /
    • 2016
  • We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+{\frac{1}{2}}a(a^2+1)f(x-y)+(a^4-1)f(y)={\frac{1}{2}}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie ${\ast}$-derivation by using a directed method and an alternative fixed point method.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

A FIXED POINT APPROACH TO THE STABILITY OF THE QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.337-347
    • /
    • 2019
  • In this paper, we investigate the generalized Hyers-Ulam stability of the quadratic and quartic type functional equations $$f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)-2f(kx)\\{\hfill{67}}+2k^2f(x)+2(k^2-1)f(y)=0,\\f(x+5y)-5f(x+4y)+10f(x+3y)-10f(x+2y)+5f(x+y)\\{\hfill{67}}-f(-x)=0,\\f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)\\{\hfill{67}}-{\frac{k^2(k^2-1)}{6}}[f(2x)-4f(x)]+2(k^2-1)f(y)=0$$ by using the fixed point theory in the sense of L. $C{\breve{a}}dariu$ and V. Radu.