ON THE STABILITY OF AN AQCQ-FUNCTIONAL EQUATION

Choonkil Park*, Sung Woo Jo**, and Dong Yeong Kho***

Abstract

In this paper, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation

$$
\begin{gather*}
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y) \tag{0.1}\\
-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y)
\end{gather*}
$$

in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [36] concerning the stability of group homomorphisms. Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [26] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [26] has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by Găvruta [8] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th.M. Rassias' approach.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A

[^0]generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [35] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [10], [13], [19]-[22], [23]-[34]).

In [12], Jun and Kim considered the following cubic functional equation
(1.1) $f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)$.

It is easy to show that the function $f(x)=x^{3}$ satisfies the functional equation (1.1), which is called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [14], Lee et al. considered the following quartic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y) \tag{1.2}
\end{equation*}
$$

It is easy to show that the function $f(x)=x^{4}$ satisfies the functional equation (1.2), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

This paper is organized as follows: In Section 2, we prove the generalized Hyers-Ulam stability of the additive-quadratic-cubic-quartic functional equation (0.1) in Banach spaces for an odd case. In Section 3, we prove the generalized Hyers-Ulam stability of the additive-quadratic-cubic-quartic functional equation (0.1) in Banach spaces for an even case.

Throughout this paper, assume that X is a normed vector space and that Y is a Banach space.

2. Generalized Hyers-Ulam stability of the functional equation (0.1): an odd case

One can easily show that an odd mapping $f: X \rightarrow Y$ satisfies (0.1) if and only if the odd mapping mapping $f: X \rightarrow Y$ is an additive-cubic mapping, i.e.,

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x) .
$$

It was shown in Lemma 2.2 of [6] that $g(x):=f(2 x)-2 f(x)$ and $h(x):=$ $f(2 x)-8 f(x)$ are cubic and additive, respectively, and that $f(x)=$ $\frac{1}{6} g(x)-\frac{1}{6} h(x)$.

One can easily show that an even mapping $f: X \rightarrow Y$ satisfies (0.1) if and only if the even mapping $f: X \rightarrow Y$ is a quadratic-quartic mapping, i.e.,
$f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x)+2 f(2 y)-8 f(y)$.
It was shown in Lemma 2.1 of [5] that $g(x):=f(2 x)-4 f(x)$ and $h(x):=$ $f(2 x)-16 f(x)$ are quartic and quadratic, respectively, and that $f(x)=$ $\frac{1}{12} g(x)-\frac{1}{12} h(x)$.

For a given mapping $f: X \rightarrow Y$, we define

$$
\begin{aligned}
D f(x, y): & =f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+6 f(x) \\
& -f(2 y)-f(-2 y)+4 f(y)+4 f(-y)
\end{aligned}
$$

for all $x, y \in X$.
We prove the generalized Hyers-Ulam stability of the functional equation $D f(x, y)=0$ in Banach spaces: an odd case.

Theorem 2.1. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Phi(x, y):=\sum_{n=0}^{\infty} 8^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)<\infty \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(2 x)-2 f(x)-C(x)\| \leq 4 \Phi\left(\frac{x}{2}, \frac{x}{2}\right)+\Phi\left(x, \frac{x}{2}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y$ in (2.2), we get

$$
\begin{equation*}
\|f(3 y)-4 f(2 y)+5 f(y)\| \leq \varphi(y, y) \tag{2.4}
\end{equation*}
$$

for all $y \in X$.
Replacing x by $2 y$ in (2.2), we get

$$
\begin{equation*}
\|f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y)\| \leq \varphi(2 y, y) \tag{2.5}
\end{equation*}
$$

for all $y \in X$.

By (2.4) and (2.5),

$$
\begin{aligned}
\| f(4 y)-10 f(2 y) & +16 f(y)\|\leq\| 4(f(3 y)-4 f(2 y)+5 f(y)) \| \\
& +\|f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y)\| \\
& \leq 4 \varphi(y, y)+\varphi(2 y, y)
\end{aligned}
$$

for all $y \in X$. Letting $y:=\frac{x}{2}$ and $g(x):=f(2 x)-2 f(x)$ for all $x \in X$, we get

$$
\begin{equation*}
\left\|g(x)-8 g\left(\frac{x}{2}\right)\right\| \leq 4 \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(x, \frac{x}{2}\right) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
& \left\|8^{l} g\left(\frac{x}{2^{l}}\right)-8^{m} g\left(\frac{x}{2^{m}}\right)\right\| \\
& \quad \leq \sum_{j=l}^{m-1} 4 \cdot 8^{j} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)+\sum_{j=l}^{m-1} 8^{j} \varphi\left(\frac{x}{2^{j}}, \frac{x}{2^{j+1}}\right) \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.1) and (2.8) that the sequence $\left\{8^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{8^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $C: X \rightarrow Y$ by

$$
C(x):=\lim _{k \rightarrow \infty} 8^{k} g\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$.
By (2.1) and (2.2),

$$
\begin{aligned}
\|D C(x, y)\| & =\lim _{k \rightarrow \infty} 8^{k}\left\|D g\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} 8^{k}\left(\varphi\left(\frac{2 x}{2^{k}}, \frac{2 y}{2^{k}}\right)+2 \varphi\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D C(x, y)=0$. Since $g: X \rightarrow Y$ is odd, $C: X \rightarrow Y$ is odd. So the mapping $C: X \rightarrow Y$ is cubic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.8), we get (2.3). So there exists a cubic mapping $C: X \rightarrow Y$ satisfying (2.3).

Now, let $C^{\prime}: X \rightarrow Y$ be another cubic mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\left\|C(x)-C^{\prime}(x)\right\| & =8^{q}\left\|C\left(\frac{x}{2^{q}}\right)-C^{\prime}\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq 8^{q}\left\|C\left(\frac{x}{2^{q}}\right)-g\left(\frac{x}{2^{q}}\right)\right\|+8^{q}\left\|C^{\prime}\left(\frac{x}{2^{q}}\right)-g\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq 2 \cdot 4 \cdot 8^{q} \Phi\left(\frac{x}{2^{q+1}}, \frac{x}{2^{q+1}}\right)+2 \cdot 8^{q} \Phi\left(\frac{x}{2^{q}}, \frac{x}{2^{q+1}}\right)
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $C(x)=C^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of C.

Corollary 2.2. Let $\theta \geq 0$ and let p be a real number with $p>3$. Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(2 x)-2 f(x)-C(x)\| \leq \frac{2^{p}+9}{2^{p}-8} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.1 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 2.3. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Phi(x, y):=\sum_{n=0}^{\infty} \frac{1}{8^{n}} \varphi\left(2^{n} x, 2^{n} y\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.2). Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(2 x)-2 f(x)-C(x)\| \leq \frac{1}{2} \Phi(x, x)+\frac{1}{8} \Phi(2 x, x)
$$

for all $x \in X$.
Proof. It follows from (2.7) that

$$
\left\|g(x)-\frac{1}{8} g(2 x)\right\| \leq \frac{1}{2} \varphi(x, x)+\frac{1}{8} \varphi(2 x, x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.4. Let $\theta \geq 0$ and let p be a real number with $0<p<3$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.9). Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(2 x)-2 f(x)-C(x)\| \leq \frac{9+2^{p}}{8-2^{p}} \theta\|x\|^{p}
$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.3 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 2.5. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Phi(x, y):=\sum_{n=0}^{\infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.2). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq 4 \Phi\left(\frac{x}{2}, \frac{x}{2}\right)+\Phi\left(x, \frac{x}{2}\right)
$$

for all $x \in X$.
Proof. Letting $y:=\frac{x}{2}$ and $g(x):=f(2 x)-8 f(x)$ in (2.6), we get

$$
\begin{equation*}
\left\|g(x)-2 g\left(\frac{x}{2}\right)\right\| \leq 4 \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(x, \frac{x}{2}\right) \tag{2.10}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.6. Let $\theta \geq 0$ and let p be a real number with $p>1$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.9). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq \frac{2^{p}+9}{2^{p}-2} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.5 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 2.7. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Phi(x, y):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)<\infty \tag{2.11}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.2). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq 2 \Phi(x, x)+\frac{1}{2} \Phi(2 x, x)
$$

for all $x \in X$.

Proof. It follows from (2.10) that

$$
\left\|g(x)-\frac{1}{2} g(2 x)\right\| \leq 2 \varphi(x, x)+\frac{1}{2} \varphi(2 x, x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.8. Let $\theta \geq 0$ and let p be a real number with $0<p<1$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.9). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq \frac{9+2^{p}}{2-2^{p}} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.7 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.

3. Generalized Hyers-Ulam stability of the functional equation (0.1): an even case

We prove the generalized Hyers-Ulam stability of the functional equation $D f(x, y)=0$ in Banach spaces: an even case.

Theorem 3.1. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Psi(x, y):=\sum_{n=0}^{\infty} 16^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)<\infty \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.2). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq 4 \Psi\left(\frac{x}{2}, \frac{x}{2}\right)+\Psi\left(x, \frac{x}{2}\right)
$$

for all $x \in X$.
Proof. Letting $x=y$ in (2.2), we get

$$
\begin{equation*}
\|f(3 y)-6 f(2 y)+15 f(y)\| \leq \varphi(y, y) \tag{3.2}
\end{equation*}
$$

for all $y \in X$.
Replacing x by $2 y$ in (2.2), we get

$$
\begin{equation*}
\|f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y)\| \leq \varphi(2 y, y) \tag{3.3}
\end{equation*}
$$

for all $y \in X$.
By (3.2) and (3.3),

$$
\begin{align*}
& \|f(4 x)-20 f(2 x)+64 f(x)\| \\
& \quad \leq\|4(f(3 x)-6 f(2 x)+15 f(x))\| \tag{3.4}\\
& \quad+\|f(4 x)-4 f(3 x)+4 f(2 x)+4 f(x)\| \\
& \quad \leq 4 \varphi(x, x)+\varphi(2 x, x)
\end{align*}
$$

for all $x \in X$. Letting $g(x):=f(2 x)-4 f(x)$ for all $x \in X$, we get

$$
\begin{equation*}
\left\|g(x)-16 g\left(\frac{x}{2}\right)\right\| \leq 4 \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(x, \frac{x}{2}\right) \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 3.2. Let $\theta \geq 0$ and let p be a real number with $p>4$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.9). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq \frac{2^{p}+9}{2^{p}-16} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.1 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 3.3. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Psi(x, y):=\sum_{n=0}^{\infty} \frac{1}{16^{n}} \varphi\left(2^{n} x, 2^{n} y\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.2). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq \frac{1}{4} \Psi(x, x)+\frac{1}{16} \Psi(2 x, x)
$$

for all $x \in X$.
Proof. It follows from (3.5) that

$$
\left\|g(x)-\frac{1}{16} g(2 x)\right\| \leq \frac{1}{4} \varphi(x, x)+\frac{1}{16} \varphi(2 x, x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let $\theta \geq 0$ and let p be a real number with $0<p<4$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.9). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq \frac{9+2^{p}}{16-2^{p}} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.3 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 3.5. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Psi(x, y):=\sum_{n=0}^{\infty} 4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.2). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq 4 \Psi\left(\frac{x}{2}, \frac{x}{2}\right)+\Psi\left(x, \frac{x}{2}\right)
$$

for all $x \in X$.
Proof. Letting $g(x):=f(2 x)-16 f(x)$ in (3.4), we get

$$
\begin{equation*}
\left\|g(x)-4 g\left(\frac{x}{2}\right)\right\| \leq 4 \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(x, \frac{x}{2}\right) \tag{3.6}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 3.6. Let $\theta \geq 0$ and let p be a real number with $p>2$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.9). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq \frac{2^{p}+9}{2^{p}-4} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.5 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.

Theorem 3.7. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Psi(x, y):=\sum_{n=0}^{\infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.2). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq \Psi(x, x)+\frac{1}{4} \Psi(2 x, x)
$$

for all $x \in X$.
Proof. It follows from (3.6) that

$$
\left\|g(x)-\frac{1}{4} g(2 x)\right\| \leq \varphi(x, x)+\frac{1}{4} \varphi(2 x, x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 3.8. Let $\theta \geq 0$ and let p be a real number with $0<p<2$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.9). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq \frac{9+2^{p}}{4-2^{p}} \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.7 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Let $f_{o}(x):=\frac{f(x)-f(-x)}{2}$ and $f_{e}(x):=\frac{f(x)+f(-x)}{2}$. Then f_{o} is odd and f_{e} is even. f_{o} and f_{e} satisfy the functional equation (0.1). Let $g_{o}(x):=$ $f_{o}(2 x)-2 f_{o}(x)$ and $h_{o}(x):=f_{o}(2 x)-8 f_{o}(x)$. Then $f_{o}(x)=\frac{1}{6} g_{o}(x)-$ $\frac{1}{6} h_{o}(x)$. Let $g_{e}(x):=f_{e}(2 x)-4 f_{e}(x)$ and $h_{e}(x):=f_{e}(2 x)-16 f_{e}(x)$. Then $f_{e}(x)=\frac{1}{12} g_{e}(x)-\frac{1}{12} h_{e}(x)$. Thus

$$
f(x)=\frac{1}{6} g_{o}(x)-\frac{1}{6} h_{o}(x)+\frac{1}{12} g_{e}(x)-\frac{1}{12} h_{e}(x) .
$$

So we obtain the following results.

Theorem 3.9. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function satisfying (3.1). Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.2). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x)\right\| \\
& \leq \frac{2}{3} \Phi_{1}\left(\frac{x}{2}, \frac{x}{2}\right)+\frac{1}{6} \Phi_{1}\left(x, \frac{x}{2}\right)+\frac{1}{3} \Psi_{2}\left(\frac{x}{2}, \frac{x}{2}\right)+\frac{1}{12} \Psi_{2}\left(x, \frac{x}{2}\right) \\
& +\frac{2}{3} \Phi_{3}\left(\frac{x}{2}, \frac{x}{2}\right)+\frac{1}{6} \Phi_{3}\left(x, \frac{x}{2}\right)+\frac{1}{3} \Psi_{4}\left(\frac{x}{2}, \frac{x}{2}\right)+\frac{1}{12} \Psi_{4}\left(x, \frac{x}{2}\right)
\end{aligned}
$$

for all $x \in X$. Here $\Phi_{1}:=\Phi, \Psi_{2}:=\Psi, \Phi_{3}:=\Phi$ and $\Psi_{4}:=\Psi$ are given in the statements of Theorems 2.5, 3.5, 2.1 and 3.1, respectively.

Corollary 3.10. Let $\theta \geq 0$ and let p be a real number with $p>4$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.9). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x)\right\| \\
& \quad \leq\left(\frac{2^{p}+9}{6\left(2^{p}-2\right)}+\frac{2^{p}+9}{12\left(2^{p}-4\right)}+\frac{2^{p}+9}{6\left(2^{p}-8\right)}+\frac{2^{p}+9}{12\left(2^{p}-16\right)}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.9 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Theorem 3.11. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function satisfying (2.11). Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.2). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x)\right\| \\
& \leq \frac{1}{3} \Phi_{1}(x, x)+\frac{1}{12} \Phi_{1}(2 x, x)+\frac{1}{12} \Psi_{2}(x, x)+\frac{1}{48} \Psi_{2}(2 x, x) \\
& +\frac{1}{12} \Phi_{3}(x, x)+\frac{1}{48} \Phi_{3}(2 x, x)+\frac{1}{48} \Psi_{4}(x, x)+\frac{1}{192} \Psi_{4}(2 x, x)
\end{aligned}
$$

for all $x \in X$. Here $\Phi_{1}:=\Phi, \Psi_{2}:=\Psi, \Phi_{3}:=\Phi$ and $\Psi_{4}:=\Psi$ are given in the statements of Theorems 2.7, 3.7, 2.3 and 3.3, respectively.

Corollary 3.12. Let $\theta \geq 0$ and let p be a real number with $0<$ $p<1$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.9). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x)\right\| \\
& \quad \leq\left(\frac{2^{p}+9}{6\left(2-2^{p}\right)}+\frac{2^{p}+9}{12\left(4-2^{p}\right)}+\frac{2^{p}+9}{6\left(8-2^{p}\right)}+\frac{2^{p}+9}{12\left(16-2^{p}\right)}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.11 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Acknowledgments. This work was supported by R\&E Program in 2009.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[5] M. Eshaghi-Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, preprint.
[6] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, preprint.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[8] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228.
[12] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[13] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[14] S. Lee, S. Im and I. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), 387-394.
[15] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.
[16] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), 361-376.
[17] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007).
[18] C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751 (2008).
[19] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008), 87-96.
[20] C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, Math. Nachr. 281 (2008), 402-411.
[21] C. Park and J. Cui, Generalized stability of C^{*}-ternary quadratic mappings, Abstract Appl. Anal. 2007, Art. ID 23282 (2007).
[22] C. Park and A. Najati, Homomorphisms and derivations in C^{*}-algebras, Abstract Appl. Anal. 2007, Art. ID 80630 (2007).
[23] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
[24] J.M. Rassias, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131 (2007), 89-98.
[25] J.M. Rassias and M.J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), 545-558.
[26] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[27] Th.M. Rassias, Problem 16; 2, Report of the $27^{\text {th }}$ International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
[28] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
[29] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[30] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[31] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[32] Th.M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[33] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[34] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[35] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[36] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
*
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr
**
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: pigbug419@paran.com

Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: kodong57@naver.com

[^0]: Received September 02, 2009; Accepted November 06, 2009.
 2000 Mathematics Subject Classification: Primary 39B72, 54E40.
 Key words and phrases: Banach space, generalized Hyers-Ulam stability, additive-quadratic-cubic-quartic functional equation.

 Correspondence should be addressed to Choonkil Park, baak@hanyang.ac.kr.

