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ON THE STABILITY OF AN AQCQ-FUNCTIONAL
EQUATION

Choonkil Park*, Sung Woo Jo**, and Dong Yeong Kho***

Abstract. In this paper, we prove the generalized Hyers-Ulam
stability of the following additive-quadratic-cubic-quartic functional
equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)(0.1)

−6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y)
in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [36] concerning the stability of group homomorphisms.
Hyers [9] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [26] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th.M. Ras-
sias [26] has provided a lot of influence in the development of what we
call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability
of functional equations. A generalization of the Th.M. Rassias theo-
rem was obtained by Găvruta [8] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th.M. Rassias’
approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic mapping. A
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generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [35] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [2] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [10], [13], [19]–[22], [23]–[34]).

In [12], Jun and Kim considered the following cubic functional equa-
tion

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).(1.1)

It is easy to show that the function f(x) = x3 satisfies the functional
equation (1.1), which is called a cubic functional equation and every
solution of the cubic functional equation is said to be a cubic mapping.

In [14], Lee et al. considered the following quartic functional equation

f(2x + y) + f(2x− y)
= 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y).(1.2)

It is easy to show that the function f(x) = x4 satisfies the functional
equation (1.2), which is called a quartic functional equation and every
solution of the quartic functional equation is said to be a quartic map-
ping.

This paper is organized as follows: In Section 2, we prove the general-
ized Hyers-Ulam stability of the additive-quadratic-cubic-quartic func-
tional equation (0.1) in Banach spaces for an odd case. In Section 3, we
prove the generalized Hyers-Ulam stability of the additive-quadratic-
cubic-quartic functional equation (0.1) in Banach spaces for an even
case.

Throughout this paper, assume that X is a normed vector space and
that Y is a Banach space.

2. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an odd case

One can easily show that an odd mapping f : X → Y satisfies (0.1)
if and only if the odd mapping mapping f : X → Y is an additive-cubic
mapping, i.e.,

f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x).



Stability of an AQCQ-functional equation 759

It was shown in Lemma 2.2 of [6] that g(x) := f(2x)−2f(x) and h(x) :=
f(2x) − 8f(x) are cubic and additive, respectively, and that f(x) =
1
6g(x)− 1

6h(x).
One can easily show that an even mapping f : X → Y satisfies (0.1) if

and only if the even mapping f : X → Y is a quadratic-quartic mapping,
i.e.,

f(x+2y)+ f(x− 2y) = 4f(x+ y)+4f(x− y)− 6f(x)+2f(2y)− 8f(y).

It was shown in Lemma 2.1 of [5] that g(x) := f(2x)−4f(x) and h(x) :=
f(2x)− 16f(x) are quartic and quadratic, respectively, and that f(x) =
1
12g(x)− 1

12h(x).
For a given mapping f : X → Y , we define

Df(x, y) : = f(x + 2y) + f(x− 2y)− 4f(x + y)− 4f(x− y) + 6f(x)
− f(2y)− f(−2y) + 4f(y) + 4f(−y)

for all x, y ∈ X.
We prove the generalized Hyers-Ulam stability of the functional equa-

tion Df(x, y) = 0 in Banach spaces: an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑

n=0

8nϕ
( x

2n
,

y

2n

)
< ∞(2.1)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ ϕ(x, y)(2.2)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 4Φ
(x

2
,
x

2

)
+ Φ

(
x,

x

2

)
(2.3)

for all x ∈ X.

Proof. Letting x = y in (2.2), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ ϕ(y, y)(2.4)

for all y ∈ X.
Replacing x by 2y in (2.2), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ ϕ(2y, y)(2.5)

for all y ∈ X.
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By (2.4) and (2.5),

‖f(4y)− 10f(2y) + 16f(y)‖ ≤ ‖4(f(3y)− 4f(2y) + 5f(y))‖
+ ‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖(2.6)
≤ 4ϕ(y, y) + ϕ(2y, y)

for all y ∈ X. Letting y := x
2 and g(x) := f(2x) − 2f(x) for all x ∈ X,

we get ∥∥∥g(x)− 8g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,

x

2

)
(2.7)

for all x ∈ X. Hence

‖8lg(
x

2l
)− 8mg(

x

2m
)‖

≤
m−1∑
j=l

4 · 8jϕ
( x

2j+1
,

x

2j+1

)
+

m−1∑
j=l

8jϕ
( x

2j
,

x

2j+1

)
(2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It
follows from (2.1) and (2.8) that the sequence {8kg( x

2k )} is Cauchy for
all x ∈ X. Since Y is complete, the sequence {8kg( x

2k )} converges. So
one can define the mapping C : X → Y by

C(x) := lim
k→∞

8kg
( x

2k

)
for all x ∈ X.

By (2.1) and (2.2),

‖DC(x, y)‖ = lim
k→∞

8k
∥∥∥Dg

( x

2k
,

y

2k

)∥∥∥
≤ lim

k→∞
8k

(
ϕ

(
2x

2k
,
2y

2k

)
+ 2ϕ

( x

2k
,

y

2k

))
= 0

for all x, y ∈ X. So DC(x, y) = 0. Since g : X → Y is odd, C : X → Y
is odd. So the mapping C : X → Y is cubic. Moreover, letting l = 0
and passing the limit m → ∞ in (2.8), we get (2.3). So there exists a
cubic mapping C : X → Y satisfying (2.3).

Now, let C ′ : X → Y be another cubic mapping satisfying (2.3).
Then we have

‖C(x)− C ′(x)‖ = 8q
∥∥∥C

( x

2q

)
− C ′

( x

2q

)∥∥∥
≤ 8q

∥∥∥C
( x

2q

)
− g

( x

2q

)∥∥∥ + 8q
∥∥∥C ′

( x

2q

)
− g

( x

2q

)∥∥∥
≤ 2 · 4 · 8qΦ

( x

2q+1
,

x

2q+1

)
+ 2 · 8qΦ

( x

2q
,

x

2q+1

)
,
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which tends to zero as q → ∞ for all x ∈ X. So we can conclude that
C(x) = C ′(x) for all x ∈ X. This proves the uniqueness of C.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3.
Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(2.9)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 2p + 9
2p − 8

θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑

n=0

1
8n

ϕ (2nx, 2ny) < ∞

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.2).
Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 1
2
Φ (x, x) +

1
8
Φ (2x, x)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥g(x)− 1
8
g (2x)

∥∥∥∥ ≤ 1
2
ϕ (x, x) +

1
8
ϕ (2x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3.
Let f : X → Y be an odd mapping satisfying (2.9). Then there exists a
unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 9 + 2p

8− 2p
θ‖x‖p

for all x ∈ X.
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Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑

n=0

2nϕ
( x

2n
,

y

2n

)
< ∞

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.2).
Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)−A(x)‖ ≤ 4Φ
(x

2
,
x

2

)
+ Φ

(
x,

x

2

)
for all x ∈ X.

Proof. Letting y := x
2 and g(x) := f(2x)− 8f(x) in (2.6), we get∥∥∥g(x)− 2g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,

x

2

)
(2.10)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1.
Let f : X → Y be an odd mapping satisfying (2.9). Then there exists a
unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)−A(x)‖ ≤ 2p + 9
2p − 2

θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑

n=0

1
2n

ϕ (2nx, 2ny) < ∞(2.11)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.2).
Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)−A(x)‖ ≤ 2Φ (x, x) +
1
2
Φ (2x, x)

for all x ∈ X.
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Proof. It follows from (2.10) that∥∥∥∥g(x)− 1
2
g (2x)

∥∥∥∥ ≤ 2ϕ (x, x) +
1
2
ϕ (2x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1.
Let f : X → Y be an odd mapping satisfying (2.9). Then there exists a
unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)−A(x)‖ ≤ 9 + 2p

2− 2p
θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 2.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

3. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an even case

We prove the generalized Hyers-Ulam stability of the functional equa-
tion Df(x, y) = 0 in Banach spaces: an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑

n=0

16nϕ
( x

2n
,

y

2n

)
< ∞(3.1)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quartic mapping Q : X → Y such
that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 4Ψ
(x

2
,
x

2

)
+ Ψ

(
x,

x

2

)
for all x ∈ X.

Proof. Letting x = y in (2.2), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ ϕ(y, y)(3.2)

for all y ∈ X.
Replacing x by 2y in (2.2), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ ϕ(2y, y)(3.3)
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for all y ∈ X.
By (3.2) and (3.3),

‖f(4x)− 20f(2x) + 64f(x)‖
≤ ‖4(f(3x)− 6f(2x) + 15f(x))‖(3.4)
+‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖
≤ 4ϕ(x, x) + ϕ(2x, x)

for all x ∈ X. Letting g(x) := f(2x)− 4f(x) for all x ∈ X, we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,

x

2

)
(3.5)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 4.
Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 2p + 9
2p − 16

θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑

n=0

1
16n

ϕ (2nx, 2ny) < ∞

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quartic mapping Q : X → Y such
that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 1
4
Ψ (x, x) +

1
16

Ψ (2x, x)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥g(x)− 1
16

g (2x)
∥∥∥∥ ≤ 1

4
ϕ (x, x) +

1
16

ϕ (2x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4.
Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 9 + 2p

16− 2p
θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑

n=0

4nϕ
( x

2n
,

y

2n

)
< ∞

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quadratic mapping T : X → Y
such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 4Ψ
(x

2
,
x

2

)
+ Ψ

(
x,

x

2

)
for all x ∈ X.

Proof. Letting g(x) := f(2x)− 16f(x) in (3.4), we get∥∥∥g(x)− 4g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,

x

2

)
(3.6)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.6. Let θ ≥ 0 and let p be a real number with p > 2.
Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 2p + 9
2p − 4

θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.
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Theorem 3.7. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑

n=0

1
4n

ϕ (2nx, 2ny) < ∞

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quadratic mapping T : X → Y
such that

‖f(2x)− 16f(x)− T (x)‖ ≤ Ψ(x, x) +
1
4
Ψ (2x, x)

for all x ∈ X.

Proof. It follows from (3.6) that∥∥∥∥g(x)− 1
4
g (2x)

∥∥∥∥ ≤ ϕ (x, x) +
1
4
ϕ (2x, x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2.
Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 9 + 2p

4− 2p
θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Let fo(x) := f(x)−f(−x)
2 and fe(x) := f(x)+f(−x)

2 . Then fo is odd and
fe is even. fo and fe satisfy the functional equation (0.1). Let go(x) :=
fo(2x) − 2fo(x) and ho(x) := fo(2x) − 8fo(x). Then fo(x) = 1

6go(x) −
1
6ho(x). Let ge(x) := fe(2x) − 4fe(x) and he(x) := fe(2x) − 16fe(x).
Then fe(x) = 1

12ge(x)− 1
12he(x). Thus

f(x) =
1
6
go(x)− 1

6
ho(x) +

1
12

ge(x)− 1
12

he(x).

So we obtain the following results.
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Theorem 3.9. Let ϕ : X2 → [0,∞) be a function satisfying (3.1).
Let f : X → Y be a mapping satisfying f(0) = 0 and (2.2). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y ,
a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ 2

3
Φ1

(x

2
,
x

2

)
+

1
6
Φ1

(
x,

x

2

)
+

1
3
Ψ2

(x

2
,
x

2

)
+

1
12

Ψ2

(
x,

x

2

)
+

2
3
Φ3

(x

2
,
x

2

)
+

1
6
Φ3

(
x,

x

2

)
+

1
3
Ψ4

(x

2
,
x

2

)
+

1
12

Ψ4

(
x,

x

2

)
for all x ∈ X. Here Φ1 := Φ,Ψ2 := Ψ,Φ3 := Φ and Ψ4 := Ψ are given
in the statements of Theorems 2.5, 3.5, 2.1 and 3.1, respectively.

Corollary 3.10. Let θ ≥ 0 and let p be a real number with p > 4.
Let f : X → Y be a mapping satisfying f(0) = 0 and (2.9). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y ,
a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤

(
2p + 9

6(2p − 2)
+

2p + 9
12(2p − 4)

+
2p + 9

6(2p − 8)
+

2p + 9
12(2p − 16)

)
θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.9 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.

Theorem 3.11. Let ϕ : X2 → [0,∞) be a function satisfying (2.11).
Let f : X → Y be a mapping satisfying f(0) = 0 and (2.2). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y ,
a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ 1

3
Φ1 (x, x) +

1
12

Φ1 (2x, x) +
1
12

Ψ2 (x, x) +
1
48

Ψ2 (2x, x)

+
1
12

Φ3 (x, x) +
1
48

Φ3 (2x, x) +
1
48

Ψ4 (x, x) +
1

192
Ψ4 (2x, x)
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for all x ∈ X. Here Φ1 := Φ,Ψ2 := Ψ,Φ3 := Φ and Ψ4 := Ψ are given
in the statements of Theorems 2.7, 3.7, 2.3 and 3.3, respectively.

Corollary 3.12. Let θ ≥ 0 and let p be a real number with 0 <
p < 1. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.9).
Then there exist an additive mapping A : X → Y , a quadratic mapping
T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤

(
2p + 9

6(2− 2p)
+

2p + 9
12(4− 2p)

+
2p + 9

6(8− 2p)
+

2p + 9
12(16− 2p)

)
θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.11 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X.
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