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ON THE STABILITY OF AN AQCQ-FUNCTIONAL
EQUATION

CHOONKIL PARK*, SUNG W00 Jo**, AND DoNG YEONG KHO***

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam

stability of the following additive-quadratic-cubic-quartic functional

equation

(0.1) fl@+2y) + f(z —2y) =4f (w +y) +4f(z —y)
—6f(z) + f(2y) + f(=2y) — 4f (y) — 4f(-y)

in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [36] concerning the stability of group homomorphisms.
Hyers [9] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [26] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th.M. Ras-
sias [26] has provided a lot of influence in the development of what we
call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability
of functional equations. A generalization of the Th.M. Rassias theo-
rem was obtained by Gavruta [8] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th.M. Rassias’
approach.

The functional equation

flx+y)+ flx—y)=2f(z) +2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic mapping. A
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generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [35] for mappings f: X — Y, where X is
a normed space and Y is a Banach space. Cholewa [2] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [10], [13], [19]-[22], [23]-[34]).

In [12], Jun and Kim considered the following cubic functional equa-~
tion

(11) fx+y)+ f2r —y) =2f(z +y) +2f(z —y) + 12f(z).

It is easy to show that the function f(r) = 23 satisfies the functional
equation (1.1), which is called a cubic functional equation and every
solution of the cubic functional equation is said to be a cubic mapping.

In [14], Lee et al. considered the following quartic functional equation

fQRz+y)+ f(2z —y)
(1.2) =4f(x+y)+4f(z —y) +24f(z) - 6f(y).

It is easy to show that the function f(z) = z* satisfies the functional
equation (1.2), which is called a quartic functional equation and every
solution of the quartic functional equation is said to be a quartic map-
ping.

This paper is organized as follows: In Section 2, we prove the general-
ized Hyers-Ulam stability of the additive-quadratic-cubic-quartic func-
tional equation (0.1) in Banach spaces for an odd case. In Section 3, we
prove the generalized Hyers-Ulam stability of the additive-quadratic-
cubic-quartic functional equation (0.1) in Banach spaces for an even
case.

Throughout this paper, assume that X is a normed vector space and
that Y is a Banach space.

2. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an odd case

One can easily show that an odd mapping f : X — Y satisfies (0.1)
if and only if the odd mapping mapping f : X — Y is an additive-cubic
mapping, i.e.,

flx+2y) + f(z —2y) =4Af(z +y) +4f(z —y) — 6f(2).
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It was shown in Lemma 2.2 of [6] that g(z) := f(2z) —2f(z) and h(z) :=
f(2z) — 8f(x) are cubic and additive, respectively, and that f(z) =
§9(@) — gh(@).

One can easily show that an even mapping f : X — Y satisfies (0.1) if
and only if the even mapping f : X — Y is a quadratic-quartic mapping,
ie.,
fla+2y)+ flz—2y) =4f(x+y) +4f(x —y) - 6f(x) + 2/ (2y) — 8f(y).

It was shown in Lemma 2.1 of [5] that g(z) := f(2z)—4f(z) and h(z) :=
f(2x) — 16 f(x) are quartic and quadratic, respectively, and that f(x) =

129(x) = 13h(x).
For a given mapping f: X — Y, we define
Df(z,y): = fl@+2y)+ fle—2y) —4f(x+y) —4f(x —y) +6f(z)
f2y) = f(=2y) +4f(y) + 4/ (—y)

for all z,y € X.
We prove the generalized Hyers-Ulam stability of the functional equa-
tion Df(x,y) = 0 in Banach spaces: an odd case.

THEOREM 2.1. Let ¢ : X? — [0,00) be a function such that

(2.1) O(z,y) = ZS"go (2%, 2%) < 00
n=0

for all x,y € X. Let f: X — Y be an odd mapping satisfying
(2:2) IDf (@, y)ll < o(z,y)

for all x,y € X. Then there exists a unique cubic mapping C : X — Y
such that

(23)  |f2z) - 2f(z) - O(z)| < 4@ (% %) +¢ ("” g)

forallx € X.
Proof. Letting x = y in (2.2), we get

(2.4) 1£(3y) —4f(2y) +5f (W)l < ¢(y,y)

for all y € X.
Replacing z by 2y in (2.2), we get

(2.5) | f(4y) —4f(3y) +6f(2y) —4f (W) < ¢(2y,y)
for all y € X.
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By (2.4) and (2.5),

[f(4y) —10f(2y) + 16f(y)ll < [[4(f(By) —4f(2y) +5f(y))ll
(2.6) + |If(4y) —4f(3y) +6£(2y) — 4f ()|l
< de(y,y) + 02y, )

for all y € X. Letting y := 5 and g(z) := f(2x) — 2f(z) for all x € X,
we get

(2.7) Hg(w) — 8¢ (%)H 4*"(2 2) S"( 920)
for all x € X. Hence
189(5) = 8" ()l

(2.8) m; <2g+1’23+1> 28]< ﬁ)

for all nonnegative integers m and [ with m > [ and all x € X. It
follows from (2.1) and (2.8) that the sequence {8’“9(2%)} is Cauchy for

all z € X. Since Y is complete, the sequence {8’“9(2%)} converges. So
one can define the mapping C': X — Y by

C(z) = hm kg <2k>
for all z € X.
By (2.1) and (2.2),

IDC(@ )| = Jlim 8 |Dg (5. 57) |

k 2x 2y r oy
s Jfm3 ( <2k’ 2k> +2‘P<2k’ 2k>> =0
for all z,y € X. So DC(z,y) =0. Since g: X - Y isodd, C: X - Y
is odd. So the mapping C' : X — Y is cubic. Moreover, letting [ = 0
and passing the limit m — oo in (2.8), we get (2.3). So there exists a
cubic mapping C' : X — Y satisfying (2.3).
Now, let ¢’ : X — Y be another cubic mapping satisfying (2.3).

Then we have
e (z) - ()l

IC@) - @)
e () -0 @)+ @) -o()]

: ) £ 28 (g )
= 2-4 8(b(2q+1’2q+1 +2-87¢ 29’ 9q+1

IN
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which tends to zero as ¢ — oo for all x € X. So we can conclude that
C(z) = C'(z) for all x € X. This proves the uniqueness of C. O

COROLLARY 2.2. Let # > 0 and let p be a real number with p > 3.
Let f: X — Y be an odd mapping satisfying

(2.9) IDf(, y)ll < (]| + llyll”)

for all x,y € X. Then there exists a unique cubic mapping C : X — Y
such that

2P +9
20 — 8

[f(22) = 2f(z) — C(2)]| <
for allx € X.

0|z

Proof. The proof follows from Theorem 2.1 by taking

p(x,y) == 0(z]|” + [ly[*)
for all z,y € X. O

THEOREM 2.3. Let ¢ : X? — [0,00) be a function such that

o0

1 n n
B(w,y) =) o (2'3,2"y) < 00

n=0

for all x,y € X. Let f : X — Y be an odd mapping satisfying (2.2).
Then there exists a unique cubic mapping C : X — Y such that

1 1
1£(22) = 2f(2) = C(2)]| < 5@ (2, 2) + S ® (22, 2)
forall x € X.
Proof. 1t follows from (2.7) that

|

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

1 1
< g¢ (@ z) + S (22, 2)

o) — 59 20)| < 5 5

8

COROLLARY 2.4. Let 6 > 0 and let p be a real number with 0 < p < 3.
Let f: X — Y be an odd mapping satisfying (2.9). Then there exists a
unique cubic mapping C': X — Y such that

1£(2e) - 2f(x) - Cla)]| < 22

8 —2p
for all x € X.

0| =(”
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Proof. The proof follows from Theorem 2.3 by taking

p(,y) = 0= + [ly[I*)
for all z,y € X. O

THEOREM 2.5. Let ¢ : X? — [0,00) be a function such that

o0
r Yy
O(x,y) = 22”90 (2—”, 27) < 00
n=0

for all z,y € X. Let f : X — Y be an odd mapping satisfying (2.2).
Then there exists a unique additive mapping A : X — Y such that

I(22) = 8f(2) - A@)l < 40 (5.5) + @ (=.5)
for all z € X.
Proof. Letting y := 3 and g(z) := f(2x) — 8f(x) in (2.6), we get

x T x x
21 -2 (5)[ <40 (5:5) +(=3)
(2.10) Hg(w)92_<p22+sow2
for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 2.6. Let § > 0 and let p be a real number with p > 1.
Let f: X — Y be an odd mapping satisfying (2.9). Then there exists a
unique additive mapping A : X — Y such that

1£(22) - 8f(2) — Ax)| < 22

2P — 2
for all x € X.

0|(”

Proof. The proof follows from Theorem 2.5 by taking
o(,y) = 0(z[|” + [ly[l”)

for all z,y € X. O
THEOREM 2.7. Let ¢ : X2 — [0,00) be a function such that
oo
1
(2.11) O(x,y) := Z 27@(2”93,27@) < 00
n=0

for all z,y € X. Let f : X — Y be an odd mapping satisfying (2.2).
Then there exists a unique additive mapping A : X — Y such that

[f(22) — 8f(z) — A(z)|| < 2@ (z,2) + %‘P (2z, )
forall x € X.
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Proof. 1t follows from (2.10) that

o(z) - 59(20) | < 20 (5,2) + 50 (22,2)

for all x € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 2.8. Let § > 0 and let p be a real number with 0 < p < 1.
Let f: X — Y be an odd mapping satisfying (2.9). Then there exists a
unique additive mapping A : X — Y such that

1£(22) - 8f(2) - Ax)]| < 2 -2

2—2p
for all x € X.

0|z(”

Proof. The proof follows from Theorem 2.7 by taking

p(x,y) == 0(]z]|” + [ly[[*)
for all z,y € X. O

3. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an even case

We prove the generalized Hyers-Ulam stability of the functional equa-
tion D f(x,y) = 0 in Banach spaces: an even case.

THEOREM 3.1. Let ¢ : X? — [0,00) be a function such that
(3.1) V(z,y) = Z 16" (i ﬁ) < 00
0

for allz,y € X. Let f : X — Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quartic mapping @ : X — Y such
that

I(20) 45 (@) - Q)| < aw (3. 5) +¥ («.5)

272
forallx € X.
Proof. Letting x = y in (2.2), we get
(3.2) 1fBy) = 6f(2y) +15F (W)l < (y,y)
for all y € X.

Replacing = by 2y in (2.2), we get
(3.3) 1 (4y) — 4f(By) +4f (2y) + 4f (W) < (2y,y)
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for all y € X.
By (3.2) and (3.3),

1/ (42) = 20f(2x) + 64f (2)]
(3-4) < [[4(f(3z) — 6f(2x) + 15 (2))]|
+lIf(4z) = 4f(Bx) + 4f (22) + 4f ()]
<Adp(x,x) + ¢(2x,x)
for all x € X. Letting g(z) := f(2z) — 4f(x) for all z € X, we get

(3.5) Hg(m’)—lﬁg( )H—49"(2 2)+‘p( ;)

for all x € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 3.2. Let # > 0 and let p be a real number with p > 4.
Let f: X — Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quartic mapping @ : X — Y such that

2P 49
1722) = 4f(2) - Q) < 5~
forallx € X.

Oll|[”

Proof. The proof follows from Theorem 3.1 by taking
(e, y) = 0= + lly[l”)

for all z,y € X. O
THEOREM 3.3. Let ¢ : X? — [0,00) be a function such that
1
U(z,y) = Z) 1o ? (2'7,2"y) < oo
n=

for all z,y € X. Let f : X — Y be an even mapping satisfying f(0) =
and (2.2). Then there exists a unique quartic mapping @ : X — Y such
that

1
I£(22) ~ 47(2) ~ Q)| < ¥ (2. 2) + -
for all x € X.
Proof. Tt follows from (3.5) that

6\11 (2z,x)

< 10 (0.0) + 10 (20,2)

H —79 (22) 16

for all x € X.
The rest of the proof is similar to the proof of Theorem 2.1. O
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COROLLARY 3.4. Let 8 > 0 and let p be a real number with(0 < p < 4.
Let f : X — Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quartic mapping () : X — Y such that

94 27
17(22) = 4f(2) - Q)| < 15—
forallxz € X.

Ol|[”

Proof. The proof follows from Theorem 3.3 by taking

o, y) = 0(x[|” + [lyll”)
for all z,y € X. O

THEOREM 3.5. Let ¢ : X2 — [0,00) be a function such that

U(z,y) = 24 @ (2—71, 27) < 00
n=0

for all z,y € X. Let f : X — Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quadratic mapping T : X — Y
such that

1 (22) = 16f(2) = T() | < 49 (5.5) +¥ (2. 5)
for all z € X.
Proof. Letting g(z) := f(2z) — 16f(z) in (3.4), we get
39 om0 ()] <40 (52) 2 (n3)

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 3.6. Let # > 0 and let p be a real number with p > 2.
Let f: X — Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quadratic mapping T' : X — Y such that

1£(22) — 16f(2) - T(x)]| < 22

20 — 4
for all x € X.

0| =(”

Proof. The proof follows from Theorem 3.5 by taking

p(x,y) = 0([lz]|” + [ly[*)
for all z,y € X. O
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THEOREM 3.7. Let ¢ : X? — [0,00) be a function such that

o0

1
V(w,y) =) e (2"2,2"y) < oo

n=0

for all z,y € X. Let f : X — Y be an even mapping satisfying f(0) = 0
and (2.2). Then there exists a unique quadratic mapping T : X — Y
such that

1
17 (22) = 16f(2) = T(2)|| < ¥ (z,2) + 3V (22, 2)
for all z € X.
Proof. 1t follows from (3.6) that

1
< % (:E733) + Z(’D (21"’ :I:)

o) - Jo 20

for all x € X.
The rest of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 3.8. Let # > 0 and let p be a real number with 0 < p < 2.
Let f: X — Y be an even mapping satisfying f(0) = 0 and (2.9). Then
there exists a unique quadratic mapping T' : X — Y such that

9427
4 —2p

[f(22) — 16 f(z) — T(z)[| <
forallz € X.

0l|=(”

Proof. The proof follows from Theorem 3.7 by taking

p(x,y) == 0(|z]|” + [ly[*)
for all z,y € X. O

Let fo(x) := W and fe(z) := W Then f, is odd and
fe is even. f, and f. satisfy the functional equation (0.1). Let g,(z) :=
fo(2x) — 2fo(x) and hy(z) := fo(2x) — 8fo(x). Then fo(x) = %go(:r) —
%ho(x). Let ge(x) := fe(2x) — 4fe(z) and he(x) = fo(2x) — 16 fc(z).
Then fe(z) = 159e(z) — 5he(x). Thus

1 1 1 1

() = 590(2) = Ghole) + 159:(2) = 15hela).

So we obtain the following results.
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THEOREM 3.9. Let ¢ : X2 — [0,00) be a function satisfying (3.1).
Let f: X — Y be a mapping satisfying f(0) = 0 and (2.2). Then there
exist an additive mapping A : X — Y, a quadratic mappingT : X — Y,
a cubic mapping C' : X — Y and a quartic mapping Q) : X — Y such
that

1

|10) - 4 - 570 - g0 - Q)

2 T x 1 T 1 T x 1 x

20 (5 o (o3 I 3) e o)

=3%\3g) Te®(\mg) 32 (53) T2 (%
2 r x 1 x 1 xr x 1 T
o (33) 1 (:5) 40 (59 o (-3)

t3®(3g) Te®\mg) 3%y g) T %\ g

for all x € X. Here &1 := &, Vg := U, &3 := & and ¥, := V¥ are given

in the statements of Theorems 2.5, 3.5, 2.1 and 3.1, respectively.

COROLLARY 3.10. Let 8 > 0 and let p be a real number with p > 4.
Let f: X — Y be a mapping satisfying f(0) = 0 and (2.9). Then there
exist an additive mapping A : X — Y, a quadratic mappingT : X — Y,
a cubic mapping C' : X — Y and a quartic mapping Q) : X — Y such
that

|10~ 340 - 57 - how) - fsaw)|
2P +9 2P +9 2% 19 % 49 )
< (55 * =7 * sr—g * =i I

for all x € X.

Proof. The proof follows from Theorem 3.9 by taking

p(x,y) == 0(|[z]|” + [ly[*)
for all z,y € X. O

THEOREM 3.11. Let ¢ : X2 — [0,00) be a function satisfying (2.11).
Let f: X — Y be a mapping satisfying f(0) = 0 and (2.2). Then there
exist an additive mapping A : X — Y, a quadratic mappingT : X — Y,
a cubic mapping C' : X — Y and a quartic mapping () : X — Y such
that

1

|10) - ) - 3570 - g0 - Q)

1 1 1 1
< §<I>1 (x,z) + E(I)l (2z,z) + E\IJQ (x,z) + @‘112 (2z, )

1 1 1 1
+E‘I’3 (z, ) + qu)?) (2z,2) + @‘1’4 (z,2) + @‘1’4 (2z,z)
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for all x € X. Here &1 := ¢, Vg := U, &3 := & and ¥, := V¥ are given
in the statements of Theorems 2.7, 3.7, 2.3 and 3.3, respectively.

COROLLARY 3.12. Let 8 > 0 and let p be a real number with 0 <
p <1l Let f: X — Y be a mapping satisfying f(0) = 0 and (2.9).
Then there exist an additive mapping A : X — Y, a quadratic mapping
T : X — Y, a cubic mapping C' : X — Y and a quartic mapping
Q : X — Y such that

[0~ 340 - 570 - fow) - e
2P 49 2P 19 %419 P 49
= <6<2 —) T aa—2) " eE-2) | 12016 - 2,0)) Olll”

for all x € X.

Proof. The proof follows from Theorem 3.11 by taking

p(a,y) =0l + llyl”)

for all z,y € X. O
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