• Title/Summary/Keyword: Quadrature formula

Search Result 32, Processing Time 0.023 seconds

Error Performance of BPSK and QPSK Signals with Diversity Reception in Mobile-Satellite Communication Channel (이동 위성 통신 채널에서 다이버시티 수신기법을 적용한 BPSK 및 QPSK 신호의 오율 특성)

  • 박해천;강영흥;황인관;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.36-47
    • /
    • 1994
  • The error performance of BPSK and QPSK signals with diversity reception in mobile-satellite channel is investigated considering nonlinearity of TWT (Traveling Wave Tube) amplifier in the presence of AWGN(Additive White Gaussian Noise) on the uplink and downlink paths. It is assumed that the fading on the dounlink path forms a Rician distribution. The Rician distribution is approximated by discrete probability values. The values are firstly found by Classical Moment Technique.

  • PDF

Analysis of Two-dimensional Multi-regions Problem Using Boundary Integral Equation Method (2차원 다영역 문제의 경계적분 해석)

  • Lim, Eui-Soo;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.101-103
    • /
    • 1999
  • This paper presents an analysis of 2-dimensional(2-D) multi-regions problem using boundary integral equation method(BIEM). When compared with finite element method(FEM), there are only a few unknown variables in BIEM because it implements numerical analysis only for the surface or boundary of a model. As a result, a lot of computational memory and time can be saved. Procedure to analyze 2-D multi-regions problem using potentials and its derivatives in a boundary as unknown variables, first, numerical analysis is performed for each of subregions. And then interface continuity condition is applied to the interface between them and Gauss Quadrature Formula are adopted to solve singular integral in a boundary in this paper.

  • PDF

A Study of 2-D Eddy Current Problem Using Boundary Element Method (경계요소법을 이용한 2차원 와전류 문제에 대한 연구)

  • Lim, Eui-Soo;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.217-219
    • /
    • 1999
  • This paper presents a study of 2-dimensional(2-D) eddy current problem using boundary element method(BEM). When compared with finite element method(FEM), there are only a few unknown variables in BEM because it implements numerical analysis only for the surface or boundary of a model. As a result, a lot of computational memory and time can be saved. In order to analyze 2-D eddy current problem, potentials and its derivatives(flux) in a boundary are used as variables. The Mantel function of the second kind of the zero order is used here as a fundamental solution. In order to remove singularity and to solve the integral equations in a boundary, Subtracting Singularity Method and Gauss Quadrature Formula are adopted in this paper.

  • PDF

Symbol Error Rates of QAM with Selection Combining Space Diversity in Rayleigh Fading Channels (레일레이 페이딩채널에서 선택성 결합방식의 공간다이버시티를 이용한 QAM의 심벌오율)

  • 김창주;김영수;정구영;문재경;이혁재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.75-79
    • /
    • 1995
  • This paper derives the symbol error rate (SER) for quadrature amplitude modulation (QAM) with L-fold selection combining (SC) space diversity in Rayleigh fading channel. No analysis has been reported yet for theoretical SER performance of QAM with SC space diversity in Rayleigh fading channels. The formula is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise channel over the distribution of the maximum signal-to-noise ratio among all of the diversity channels. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general SC space diversity. Analytical results show that the probability of error decreases with the order of diversity. We can also see that the incremental diversity gain per additional diversity decreases as the number of branches becomes larger.

  • PDF

Normalization Factor for Three-Level Hierarchical 64QAM Scheme (3-level 계층 64QAM 기법의 정규화 인수)

  • You, Dongho;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.77-79
    • /
    • 2016
  • In this paper, we consider hierarchical modulation (HM), which has been widely exploited in digital broadcasting systems. In HM, each independent data stream is mapped to the modulation symbol with different transmission power and normalization factors of conventional M-QAM cannot be used. In this paper, we derive the method and formula for exact normalization factor of three-level hierarchical 64QAM.

New Evaluation on Correlated MRC Diversity Reception for the Detection of Signals over Wireless Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • The performances of M-ary signals using L-branch maximum ratio combining (MRC) diversity reception in correlated Nakagami fading channels are derived theoretically. The coherent reception of M-ary differential phase shift keying (MDPSK), phase shift keying (MPSK), and quadrature amplitude modulation (MQAM) is considered. It is assumed that the fading parameters in each diversity branch are identical. The general formula for evaluating symbol error rate (SER) of M-ary signals in the independent branch diversity system is presented using the integral-form expressions. Until now, results did not extend to the various M-ary case for a coherent reception. The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

  • PDF

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG;CHUNHUA, FANG;JIANYU, WANG;ZHENGSU, WAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.983-993
    • /
    • 2022
  • The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

A STUDY ON MILNE-TYPE INEQUALITIES FOR A SPECIFIC FRACTIONAL INTEGRAL OPERATOR WITH APPLICATIONS

  • Arslan Munir;Ather Qayyum;Laxmi Rathour;Gulnaz Atta;Siti Suzlin Supadi;Usman Ali
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.297-314
    • /
    • 2024
  • Fractional integral operators have been studied extensively in the last few decades by various mathematicians, because it plays a vital role in the developments of new inequalities. The main goal of the current study is to establish some new Milne-type inequalities by using the special type of fractional integral operator i.e Caputo Fabrizio operator. Additionally, generalization of these developed Milne-type inequalities for s-convex function are also given. Furthermore, applications to some special means, quadrature formula, and q-digamma functions are presented.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

An efficient Reliability Analysis Method Based on The Design of Experiments Augmented by The Response Surface Method (실험계획법과 반응표면법을 이용한 효율적인 신뢰도 기법의 개발)

  • 이상훈;곽병만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.700-703
    • /
    • 2004
  • A reliability analysis and design procedure based on the design of experiment (DOE) is combined with the response surface method (RSM) for numerical efficiency. The procedure established is based on a 3$^n$ full factorial DOE for numerical quadrature using explicit formula of optimum levels and weights derived for general distributions. The full factorial moment method (FFMM) shows good performance in terms of accuracy and ability to treat non-normally distributed random variables. But, the FFMM becomes very inefficient because the number of function evaluation required increases exponentially as the number of random variables considered increases. To enhance the efficiency, the response surface moment method (RSMM) is proposed. In RSMM, experiments only with high probability are conducted and the rest of data are complemented by a quadratic response surface approximation without mixed terms. The response surface is updated by conducting experiments one by one until the value of failure probability is converged. It is calculated using the Pearson system and the four statistical moments obtained from the experimental data. A measure for checking the relative importance of an experimental point is proposed and named as influence index. During the update of response surface, mixed terms can be added into the formulation.

  • PDF