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Abstract: Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was

investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell

type is defined as a function of sine of angular distance from the bell’s center in order to guarantee the continuity on the

global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of

polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the

accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of

the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders

that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell

is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the

spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was

compared with theoretical values for various scale parameters. The new method was found advantageous over discrete

numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with

accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine

the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized

function.
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Introduction

Spatial distribution of scalar variables is often

represented with a Gaussian-bell function. It represents

a quite natural form of scalar distribution in many

physical, geophysical, and statistical quantities. In

numerical weather prediction models, the Gaussian

bell function is widely used to evaluate the accuracy

and stability of the numerical method with which the

models are implemented. As is well known, the

Gaussian bell shows a symmetric structure and it

decays exponentially away from the bell’s center

(Hopkins, 1973; Cheong and Park, 2008; Cheong et

al., 2012). The spatial gradient is zero over the center,

and decreases as the distance from the center increases

until it reaches a minimum value. Beyond the point of

minimum gradient, the slope again increases, and

reaches asymptotically zero far away from the center.

It should be reminded, however, that the slope goes to

zero only when the distance from the center is

infinite. Therefore, when a vanishing gradient is

required at boundaries of domain of interest, the

Gaussian function cannot be used without modification.

Gaussian bell is characterized by one single

parameter which specifies the scale. When the term

‘width’ for the Gaussian bell is used, it means a

distance from the center at which the function is

decreased by the factor of e, which is called as e-

folding distance hereafter. For this reason, the e-

folding distance is often used as a scale of the

Gaussian bell. If a Gaussian bell of a certain scale is

decomposed into sinusoidal functions, i.e., Fourier

transformed, the spectrum (or coefficients) of Fourier

components will be wide-spread rather than being
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localized around a particular wavenumber. Distribution

of spectrum is known to be dependent on the scale

parameter. In discrete models the spectrum distribution

has very important implication because two broad

spectrum may be a cause of aliasing in the discrete

models. Therefore, when a Gaussian bell function is

used in discrete models, a priori knowledge of the

spectrum would help to determine the appropriate

resolution of the discrete model. The spectrum of a

Gaussian bell is easily obtained by usual Fourier

transform for planar coordinates such as Cartesian

coordinate system. However, it is not trivial in the

case of spherical coordinate systems since Fourier

analysis and synthesis are not applicable. Of course,

the power spectrum can be obtained by numerical

methods such as the Legendre spectral method. In this

case, however, the spectrum suffers from the machine

round-off, not being able to represent the power

spectrum below the machine round off in spite that

real power spectrum spans from order one to order to

several hundreds. So it is necessary to develop a

direct method to estimate the power spectrum of the

Gaussian bell with rigorous theoretical approach.

In this study the spherical harmonics spectrum of

Gaussian bell function, which is continuous on the

global domain, is evaluated using an accurate

estimation method based on the integral formula of

Legendre polynomials. The Legendre functions and

their Fourier-series representation for the purpose of

spherical-harmonics spectrum analysis are described in

the following section. In Section 3, details of the

direct method, two spectral method to calculate the

spectrum are presented along with the evaluation

result of the accuracy associated with the methods.

Conclusions are given in the final section.

Legendre functions and
Fourier-series representation

The Legendre polynomials are the eigenfunctions of

the spherical Laplacian operator of zonal wavenumber

zero (Dilts, 1985; Enomoto et al., 2004; Cheong et al.,

2012):

(1)

where x=cosθ with θ meaning the colatitude, m is the

zonal wavenumber, Pn(x) represents the Legendre

function with order m and degree n. In terms of the

Rodrigues’ formula, the Legendre polynomial Pn(x)

can be expressed by

(2)

On the whole domain on the spherical surface, the

Legendre polynomials constitute the orthonormal basis

such that

(3)

where δn,l means Kronecker delta. From (2), it is easy

to represent the Legendre functions of m=1 in terms

of differentiation of Legendre polynomials:

(4)

As was shown in Cheong et al. (2012), the

Legendre functions  are represented with

polynomials of x (polynomials with the metric factor

of , respectively) for m=0, 2, 4, ... (for m=1,

3, 5, ..., respectively). Therefore the Legendre

functions can be written in terms of Fourier series as

(Hofsommer and Potters, 1960; Dilts, 1985; Moriguchi

et al., 1990; Cheong, 2000; Jekeli et at., 2007; Cheong

et al., 2012):
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where αn,m,k denotes the Fourier-series coefficient of

the Legendre function . The number of Fourier

components should be the same as the degree. This

implies that the trigonometric function cosnθ is

expressed as a linear combination of Legendre

functions of even m, while the functions sinnθ is

expressed with those of odd m. For example, only

limited number of Legendre function up to n is

included in the combination to express the trigonometric

functions in case of m=0 and 1 (Risbo, 1996; Ricardi

and Burrows, 1972; Cheong et al., 2012):

   cos2nθ =

cos(2n+1)θ =

(6a-d)

sin(2n+1)θ =

 sin2nθ =

where αm,k denotes the Fourier-series coefficient of

Legendre functions of m=1 and m=1. The Fourier-

series coefficients can be obtained by the integral

formula of the Legendre functions as was presented in

Cheong et al. (2012).

Spherical harmonics spectrum of 
geopotential field of Gaussian 

bell function

Direct method based on the Legendre

polynomial

Since the spherical harmonics are isotropic on the

global domain, the spherical harmonics spectrum of a

Gaussian bell should remain the same regardless of

the location on the spherical surface (Sardeshmukh

and Hoskins, 1984). Therefore, in this study a

Gaussian bell which is centered at the North pole is

considered for simplicity:

y(θ )=exp[−asin
2
(θ /2)] (7)

where θ is the colatitude as in (1), and α [≥1] is a

scale parameter, with a larger (smaller) value defining

a narrow (wide) bell. The function in (7) is continuous

on the spherical surface because y(π)=y(−π) along

with y '=0 at θ =π. Some examples of the Gaussian

bell, given by the cross section along the great circle

passing the center, are illustrated in Fig. 1. [see also

Fig. 4(b) for the distribution over the whole sphere

where the rotated coordinates are used for better

visualization] Integration of y
2
 over the globe can be

obtained analytically, and hence will be useful in

assessing the estimation method to get the Legendre

polynomial coefficient:

 (8)

 

Equation (7) can be represented as a series of

cosθ [≡x], and equivalently a series of the Legendre

polynomials:

(9)
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Fig. 1. Cross section of Gaussian bell for different scale

parameter a, where θ means the arc-distance from the bell

center along great circle.



396 Hyeong-Bin Cheong and Hae-Jin Kong

where the Legendre polynomial is expressed by the

Rodrigues’ formula in (2), and is orthonormal as in

(3).

The power series coefficient in (9) is obtained

through successive differentiation with respect to

colatitude and applying the pole conditions as in

Cheong and Park (2007, 2008), and the Legendre

coefficients can be obtained by projecting the

Legendre polynomials to the function in (7):

(10)

  

(11a-d)

  

  

where  for k < n was used.

Substituting (10) into (9), the integral in the last line

of (11) is represented as

(12)

   

where the integral formula of Legendre functions was

incorporated (Moriguchi et al., 1990):

(13)

The series in (11) include infinite terms with the

index r, of which magnitude (i.e., absolute value of

Zn,r) may vary from the order O(1) or higher to

extremely low order far beyond the machine limit of

exponent, e.g., O(10
−323

) in the case of double

precision processing for FORTRAN90. To make the

computation practical, it is necessary to restrict the

number of terms to a finite value by examining

relative importance of the terms. Recalling the fact

that Zn,r→0 as r→∞, the choice of terms of relative

importance can be done by considering two possible

behaviors of Zn,r: One is the case where it decreases

monotonously with r, and hence the summation should

start from r=0. The other is the case where it has a

local maximum at which Zn,r decreases monotonously,

and therefore the summation starts from it and is

proceeded to both sides. The summation continues

until the next term is smaller than the sum by the

order of a predetermined value, being in this case

O(10
−17

), which is very close to the machine rounding

error in the double-precision computations.

Search of the local maximum point of Zn,r is done

by taking the ratio of two adjacent terms, and

demanding that it approaches to unity:

(14)

which yields, from the condition of r >0, the following

relationship

: Zn,r has a local maximum

(15)

: Zn,r monotonously decreasing with r

and

(16)

In the summation of (11), to avoid a heavy

computation associated with factorials, a direct

evaluation of Zn,r is done only once and is proceeded

in the remaining steps with the use of (14), that is,

(17)
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integers satisfying (15) and (16), are illustrated for

various scale parameter. Note that the local maximum

does not appear at smaller scale parameter but begins

to appear at a=10. The critical wavenumber nc

increases with the scale parameter, which means that

the function Zn,r tends to have the local maximum

unless the wavenumber n is quite large, as can be

seen in Table 1. The Legendre-polynomial coefficient

of the Gaussian bell for n=100, obtained through the

procedures explained above, is presented in Table 2

for the same scale parameters as in Table 1. The

coefficient becomes large as the scale parameter

increases, implying flattened distribution of coefficients

for large scale parameter (i.e., narrow bell).

From the orthogonality of Legendre polynomials,

the global integration of the Gaussian bell squared in

(8) is written in terms of Legendre-polynomial

coefficients:

  , (18)

  

which can be used to check the validity of the

estimation method by taking the difference from the

theoretical one in (8).

Spectral method with Gaussian quadrature

and Fourier-series method

For the Gaussian bell whose center is given as (λc,

θc), the spherical harmonics spectrum of the Gaussian

bell can be obtained by expanding with a finite series

of spherical harmonics (Nehrkorn, 1990; Swarztrauber,

1993):

(19)

   

where Re[•] implies real part of •, , M is the

largest total wavenumber, and  is the spectral

coefficient. It follows  from the fact that

the function y (λ, θ) is real-valued, and ,

where the superscript * represents the complex

conjugate. The meridional function  is the

normalized associated Legendre function of order m

and degree n, which is defined as

 (20)

The spectral coefficient is obtained through projection

of the spherical harmonics using orthogonality as

    (21a-b)
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Table 1. The critical wavenumber nc above which the function Zn,r of (17) has a local maximum for a given scale parameter a,

and the point of local maximum rm for selected values of wavenumber n

a 1 10 100 1000 10000

nc 0 5 624 62449 6249999

(n,rm) rm=0 for all n rm=0 for all n (2, 22) (50, 9) (100, 4) (2, 247) (50, 225) (100, 203) (2, 2497) (50, 2473) (100, 2449)

Table 2. Spherical harmonics coefficients for (n,m)=(100,0)

of Gaussian bell, estimated by the Legendre-polynomial inte-

gration formula for scale parameters of 1, 10, 100, 1000, and

10000

a wn=100

1 0.716394370983061E-218

10 0.845850906458664E-120

100 0.905641086590325E-037

1000 0.843377454763924E-006

10000 0.730207857341843E-003
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The spherical harmonics spectrum of the Gaussian

bell, given as grid point values on the spherical

domain, can be obtained either by the Fourier-series

method or the Gaussian quadrature (Sneeuw and Bun,

1996; Rod Blais, 2008; Wittwer et al., 2008; Cheong

et al., 2012). The projection of Legendre functions is

performed by the integral formula on the global

domain for the Fourier-series method, while it is done

by weighted sum of gridpoint values on Gaussian

grids for the Gaussian quadrature method (Swarztrauber,

1993; Cheong et al., 2012). Two discrete methods,

explained above, for the computation of spherical

harmonics coefficients are compared in Fig. 2 with a

simplified flowchart. Computational efficiency is

almost the same for the two methods, but a slightly

increased operation count for the Fourier method due

to the procedure to calculate two-dimension Fourier

coefficients, denoted as FC2D (two dimensional

Fourier coefficients) in the figure. The additional

computation needed for Fourier method is insignificant

because the heaviest burden, represented with O(J
3
), is

laid on the step to get spherical Harmonics coefficients

rather than FC2D which needs only O(J
2
log2J) for

2J×J grids.

The power spectrum (ωn) of the Gaussian bell in

terms of total wavenumber (i.e., the degree n) is

obtained by adding the spectral components for all

zonal wavenumber:

(22)

The magnitude of coefficients of ωn as a function of

n is provided in Fig. 3, along with those calculated by

two discrete methods for selected scale parameters. It

is noted that the spectrum decreases monotonically

with the total wavenumber, showing nuch flat structure

for increased scale parameter a. Two spectral methods

do not exhibit significant difference for all scale

parameters shown here. It appears that the spectrum

obtained by spectral methods do not represent the

ωn 2π ŷn m, ŷn m,

*

m 0=

n

∑=

Fig. 2. Flowchart for projection of Legendre functions by Fourier method and Gaussian quadrature. FC1D (ym), FC2D (ym,k),

and SHC represent Fourier coefficients of one-dimension, two-dimension, and spherical harmonics coefficient ( ), respec-

tively. The operation count for FC1D and FC2D is only O(J
2
log2J ) due to availability of Fast Fourier Transform (FFT), while it

is O(J
3
) for SHC, where J is the number of Gaussian grid (with the Gaussian weights ω j) in the zonal direction.

ŷn m,
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behavior at larger total wavenumbers. For example,

the spectrum remains in the order of machine round-

off beyond n=23 (n=65) in the case of a=10 (a=100)

due to the truncation error of digital computing with

double precision. These provide important implication

that the resolution of the discrete model which

incorporates the Gaussian-bell function for geopotential

field or others should be determined with care in such

a way that the information of the Gaussian field is

fully taken into consideration: In case of a=100, the

largest wavenumber of the model should be given

greater than n=65.

Evaluation of the accuracy

The accuracy of the spectrum of the Gaussian bell

can be checked by taking global integration of

Gaussian-bell squared and comparing it with the

theoretical values. The error normalized by the

reference solution in (8) is given as

(23)

Eq. (23) was calculated for the three methods, the

estimation by integration formula and two discrete

methods of Fourier method and Gaussian quadrature

(Table 3). As can be seen in Table 3, three methods

present comparable performance showing the errors

near machine rounding. The Fourier method produced

better results than the Gaussian quadrature, but slightly

poor results than the estimation method as a whole.

This results indicate that the direct method is the most

reliable way to calculate the spherical-harmonics

power spectrum of geopotential or any scalar variables

of Gaussian-bell type.

The spectral coefficients, as obtained in section 3.2,

can be transformed to the gridpoint values by reversing

the processes associated with the spectral analysis.

One of the advantages of the two spectral methods,

found not in the direct method, is that the spectral

components can be manipulated with ease. For

instance, elimination of some parts of the spectral

coefficients, being usually smaller horizontal scales

(i.e., larger n), will result in isotropic filtering (or

smoothing) of the given data (Hopkins, 1973;

Sardeshmukh and Hoskins, 1984; Enomoto et al.,

2004; Jekili et al., 2007; Cheong et al., 2012):

ωn
2

a
1–
1 e

2a–
–( )–

n 0=

∞

∑

a
1–
1 e

2a–
–( )

--------------------------------------------

Fig. 3. Logarithmic spherical-harmonics power spectrum of

Gaussian bell (i.e., log10|ωn|) with log-scale for the spherical

total-wavenumber (or degree) n on the abscissa. (a): Power

spectrum calculated by the estimation method for four scale

parameters of a=1, 10, 100, and 1000. (b): Power spectrum

for a =10 calculated by discrete methods of Gaussian quadra-

ture (thick solid line in black) and Fourier method (thin solid

line), where the dashed curves are those in panel (a). (c):

Same as (b) but a =100. Green lines for small wavenum-

bers are invisible in (b) and (c) due to complete overlap-

ping with the back solid line.

Table 3. Normalized errors of three methods to compute

global integration of Gaussian-bell squared for two scale

parameters of 10 and 100

a

Estimation with 

integration 

formula

Discrete method

Fourier

method

Gaussian 

quadrature

10 0.2322E-15 0.1767E-15 0.1767E-14

100 0.6753E-16 0.2209E-15 0.6626E-15
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(24)

where yf means filtered field and Mf the largest scale

retained in the filtered field. In Fig. 4, one example of

the filtering is illustrated in the case of a=10, where

the scales with n >10 were removed at the time of

reconstruction of gridpoint values from spherical

harmonics coefficients. Two methods seem to have

produced almost identical results, with the maximum

difference of gridpoint-value as small as O(10
−11

). It is

obvious that as the scale parameter of the Gaussian

bell becomes large, the wavenumber truncation M

(and also the number of Gaussian grids J ) should be

large enough to be away from aliasing error. As far as

the Gaussian bell is concerned, the proper choice of M

(and also J ) can be determined in the discrete

methods by investigating the power spectrum in the

reference solution. Considering that the leading order

of the Gaussian bell is close to O(1) and the power

spectrum is only significant up to the values O(10
−15

)-

O(10
−16

) for double precision computations, the

number M should be larger than the scale n at which

the power begins to drop below.

Conclusion

The spherical harmonics power spectrum of

geopotential of Gaussian-bell function was calculated

based on the direct method, the Legendre spectral

methods, and Fourier-series spectral method. The

Gaussian-bell used in this study is a continuous

function on the whole sphere without the discontinuity,

unlike a usual Gaussian-bell function which is

discontinuous over the opposite point of the bell

yf λ θ,( ) Re ŷn m, Yn
m
λ cosθ,( )

n Mf–=

Mf

∑
n m=

Mf

∑=

Fig. 4. Panel (a): Filtering of Gaussian bell function using Fourier method, where the small scales with n >10 were removed

when reconstructing the grid point data from the spherical harmonics coefficients. (b): Original Gaussian bell given by

y(β )=exp[−100sin
2
(β/2)], where β is the angular distance measured from the rotated coordinates (λ', θ ') whose north pole is

located at (60
o
E, 30

o
N). (c): Same as (a) except Gaussian quadrature. (d): difference between (b) and (c). The minimum value,

the maximum, and contour interval (CI) of the Gaussian bell function are presented in the lower part of each map.
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center. Therefore the Gaussian-bell function defined

here is appropriate for the evaluation of spherical

harmonics power spectrum. Over a wide range of

scale parameter of the Gaussian bell, it was found that

three methods produced almost the same accuracy, but

the direct method was shown to be more accurate than

any of the two spectral methods. The most important

advantage of the direct method, which is based on the

power series of the Legendre polynomials, is that the

spectrum can be estimated in the range of infinite

order, far beyond the machine round-off inherent in

the spectral methods. In other words, since the results

of the Fourier method and Legendre spectral method

are subject to the digits of accuracy, like other discrete

method such as Gaussian quadrature, increased digits

of accuracy is required when calculating correctly the

power spectra of spherical-surface function or discrete

data over extended range, as was demonstrated vividly

by Fig. 3.
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