Acknowledgement
This work was supported partly by Hunan Provincial Natural Science Foundation of China(No.2022JJ30276),the National Science Foundation of China(No.11701171), and the Science and Technology Program of Hunan Province(No.2019TP1014).
References
- S. Langdon, S.N. Chandler-Wilde, A wavenumber independent boundary element method for an acoustic scattering problem, SIAM J. Numer. Anal. 42 (2006), 2450-2477.
- S.N. Chandler-Wilde, I.G. Graham, S. Langdon, E.A. Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numerica 21 (2012), 89-305. https://doi.org/10.1017/S0962492912000037
- G. Bao, W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput. 27 (2005), 553-574. https://doi.org/10.1137/S1064827503428539
- P.J. Davis, D.B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, SIAM J. Numer. Anal. 42 (2004), 1167-1188. https://doi.org/10.1137/S0036142901395321
- M. Condon, Alfredo. Deano, A. Iserles, K. Maczynski, X. Tao, On numerical methods for highly oscillatory problems in circuit simulation, Compel. 28 (2009), 1607-1618. https://doi.org/10.1108/03321640910999897
- J. Zou, M. Li, S.H. Chang, Calculation of the magnetic field in air produced by the underground conductor using Pollaczek integral, IEEE Trans. EMC. 54 (2012), 198-204.
- H. Brunner, P. Davis, D. Duncan, Discontinuous Galerkin approximations for Volterra integral equations of the first kind, IMA J. Numer. Anal. 29 (2009), 856-881. https://doi.org/10.1093/imanum/drn037
- H. Wang, S. Xiang, Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel, IMA J. Numer. Anal. 31 (2011), 469-490. https://doi.org/10.1093/imanum/drp048
- J. Ma, C. Fang, and S. Xiang, Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations, J. Comput. Appl. Math. 281 (2015), 120-125. https://doi.org/10.1016/j.cam.2014.12.010
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, New York,2004.
- H. Brunner. On Volterra integral operators with highly oscillatory kernels, Discrete Contin. Dyn. Syst. 34 (2014), 915-929. https://doi.org/10.3934/dcds.2014.34.915
- Junjie Ma, Shuhuang Xiang, A collocation boundary value method for linear volterra integral equations, Journal of Scientific Computing 71 (2017), 1-20. https://doi.org/10.1007/s10915-016-0289-3
- H. Chen, C. Zhang, Boundary value methods for Volterra integral and integro-differential equations, Appl. Math. Comput. 218 (2011), 2619-2630. https://doi.org/10.1016/j.amc.2011.08.001
- S. Xiang, Q. Wu, Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels, Appl. Math. Comput. 223 (2013), 34-44. https://doi.org/10.1016/j.amc.2013.07.075
- Q. Wu, On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels, J. Comput. Appl. Math. 263 (2014), 370-376. https://doi.org/10.1016/j.cam.2013.12.039
- Tao Tang, Xiang Xu, Jin Cheng, On spectral methods for Volterra integral equations and convergence analysis, J. Comput. Math. 6 (2008), 825-837.
- L.N. Trefethen, Is Gauss Quadrature Better than Clenshaw¨CCurtis?, SIAM Review 50 (2008), 67-87. https://doi.org/10.1137/060659831
- J. Waldvogel, Fast Construction of the Fejr and ClenshawCurtis Quadrature Rules, BIT Numer. Math. 46 (2006), 195-202. https://doi.org/10.1007/s10543-006-0045-4
- M.Y. Hussaini, C. Canuto, A. Quarteroni, T.A. Zang, Spectral Methods Fundamentals in Single Domains, Springer, Berlin, 2006.
- D. Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin, 1989.
- Y. Chen, T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with aweakly singular kernel, Math. Comput. 79 (2010), 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
- G. Mastroianni, D. Occorsio, Optional systems of nodes for Lagrange interpolation on bounded intervels, Comput. Appl. Math. 134 (2001), 325-341. https://doi.org/10.1016/S0377-0427(00)00557-4