DOI QR코드

DOI QR Code

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG (College of Mathematics, Hunan Institute of Science and Technology) ;
  • CHUNHUA, FANG (College of Mathematics, Hunan Institute of Science and Technology) ;
  • JIANYU, WANG (College of Mathematics, Hunan Institute of Science and Technology) ;
  • ZHENGSU, WAN (College of Mathematics, Hunan Institute of Science and Technology)
  • Received : 2021.11.11
  • Accepted : 2022.04.20
  • Published : 2022.09.30

Abstract

The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

Keywords

Acknowledgement

This work was supported partly by Hunan Provincial Natural Science Foundation of China(No.2022JJ30276),the National Science Foundation of China(No.11701171), and the Science and Technology Program of Hunan Province(No.2019TP1014).

References

  1. S. Langdon, S.N. Chandler-Wilde, A wavenumber independent boundary element method for an acoustic scattering problem, SIAM J. Numer. Anal. 42 (2006), 2450-2477.
  2. S.N. Chandler-Wilde, I.G. Graham, S. Langdon, E.A. Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numerica 21 (2012), 89-305. https://doi.org/10.1017/S0962492912000037
  3. G. Bao, W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput. 27 (2005), 553-574. https://doi.org/10.1137/S1064827503428539
  4. P.J. Davis, D.B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, SIAM J. Numer. Anal. 42 (2004), 1167-1188. https://doi.org/10.1137/S0036142901395321
  5. M. Condon, Alfredo. Deano, A. Iserles, K. Maczynski, X. Tao, On numerical methods for highly oscillatory problems in circuit simulation, Compel. 28 (2009), 1607-1618. https://doi.org/10.1108/03321640910999897
  6. J. Zou, M. Li, S.H. Chang, Calculation of the magnetic field in air produced by the underground conductor using Pollaczek integral, IEEE Trans. EMC. 54 (2012), 198-204.
  7. H. Brunner, P. Davis, D. Duncan, Discontinuous Galerkin approximations for Volterra integral equations of the first kind, IMA J. Numer. Anal. 29 (2009), 856-881. https://doi.org/10.1093/imanum/drn037
  8. H. Wang, S. Xiang, Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel, IMA J. Numer. Anal. 31 (2011), 469-490. https://doi.org/10.1093/imanum/drp048
  9. J. Ma, C. Fang, and S. Xiang, Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations, J. Comput. Appl. Math. 281 (2015), 120-125. https://doi.org/10.1016/j.cam.2014.12.010
  10. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, New York,2004.
  11. H. Brunner. On Volterra integral operators with highly oscillatory kernels, Discrete Contin. Dyn. Syst. 34 (2014), 915-929. https://doi.org/10.3934/dcds.2014.34.915
  12. Junjie Ma, Shuhuang Xiang, A collocation boundary value method for linear volterra integral equations, Journal of Scientific Computing 71 (2017), 1-20. https://doi.org/10.1007/s10915-016-0289-3
  13. H. Chen, C. Zhang, Boundary value methods for Volterra integral and integro-differential equations, Appl. Math. Comput. 218 (2011), 2619-2630. https://doi.org/10.1016/j.amc.2011.08.001
  14. S. Xiang, Q. Wu, Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels, Appl. Math. Comput. 223 (2013), 34-44. https://doi.org/10.1016/j.amc.2013.07.075
  15. Q. Wu, On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels, J. Comput. Appl. Math. 263 (2014), 370-376. https://doi.org/10.1016/j.cam.2013.12.039
  16. Tao Tang, Xiang Xu, Jin Cheng, On spectral methods for Volterra integral equations and convergence analysis, J. Comput. Math. 6 (2008), 825-837.
  17. L.N. Trefethen, Is Gauss Quadrature Better than Clenshaw¨CCurtis?, SIAM Review 50 (2008), 67-87. https://doi.org/10.1137/060659831
  18. J. Waldvogel, Fast Construction of the Fejr and ClenshawCurtis Quadrature Rules, BIT Numer. Math. 46 (2006), 195-202. https://doi.org/10.1007/s10543-006-0045-4
  19. M.Y. Hussaini, C. Canuto, A. Quarteroni, T.A. Zang, Spectral Methods Fundamentals in Single Domains, Springer, Berlin, 2006.
  20. D. Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin, 1989.
  21. Y. Chen, T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with aweakly singular kernel, Math. Comput. 79 (2010), 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
  22. G. Mastroianni, D. Occorsio, Optional systems of nodes for Lagrange interpolation on bounded intervels, Comput. Appl. Math. 134 (2001), 325-341. https://doi.org/10.1016/S0377-0427(00)00557-4