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ON CLENSHAW-CURTIS SPECTRAL COLLOCATION
METHOD FOR VOLTERRA INTEGRAL EQUATIONS†

HUANG CHAOLAN, FANG CHUNHUA∗, WANG JIANYU, WAN ZHENGSU

Abstract. The main purpose of this paper is to solve the second kind
Volterra integral equations by Clenshaw-Curtis spectral collocation method.
First of all, we can transform the integral interval from [−1, x] to [−1, 1]

through a simple linear transformation, and discretize the integral term in
the equation by Clenshaw-Curtis quadrature formula to obtain the colloca-
tion equations. Then we provide a rigorous error analysis for the proposed
method. At last, several numerical example are used to verify the results
of theoretical analysis.
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1. Introduction

Volterra integral equations (VIEs) abound in many mathematical problems in
engineering and physics, They can be found in, for example, acoustic scattering
[1, 2], electromagnetic scattering [3, 4], circuit simulation [5], mutual impedance
between conductors [6]. However, for most integral equations, it is difficult to
obtain the analytical solution, the numerical approximation method which is
easy to implement, with high precision and converge fastly is usually used to
obtain the numerical solution.

This paper is concerned with the second kind Volterra integral equations

u(x) +

∫ x

−1

k(x, s)u(s)ds = f(t), x ∈ [−1, 1]. (1)
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Where u(x) is an unknown function, and the given function f(x) and kernel
function k(x, s) is smooth enough.

In recent years, there has been tremendous interest in developing calculation
of solving Volterra integral equations, such as discontinuous Galerkin method
[7], Filon-type method [8, 9], collocation method [10, 11], collocation bound-
ary value method [12, 13], collocation method on uniformmesh [14], collocation
method on graded mesh [15], spectral collocation methods [16], and so on. In
particular, in reference [16], the Legendre spectral collocation method is used
to solve equation (1), and the convergence of this method is proved theoreti-
cally. However,the calculation of Gauss-Legendre points and weights involves
the calculation of eigenvalues and eigenvectors of the matrix. While Clenshaw-
Curtis points can be obtained by FFT quickly, and it’s expression is explicit.
In addition to saving the calculation time, the calculatine accuracy is similar to
that of Gauss quadrature formula [17]. So, Clenshaw-Curtis collocation method
is more popular in engineering calculation. In this paper, Clenshaw-Curtis col-
location method is used to solve the equation (1). First, the integral term in
the equation (1) was approximated by Clenshaw-Curtis quadrature rule, and ex-
pand the unknown function u(x) by Legrange interpolation polynomials at the
Clenshaw-Curtis points to obtain the discrete format of the integral equation.
Then we provide a rigorous error analysis for the proposed method in theory.
At last, several numerical examples are used to verify the results of theoretical
analysis.

2. Clenshaw-Curtis collocation method

Set the collocation points as the set of (n + 1) Clenshaw-Curtis points{xi =
cos( iπn )}

n
i=0. Assume that the equation (1) holds at xi

u(xi) +

∫ xi

−1

k(xi, s)u(s)ds = f(xi), 0 ≤ i ≤ n. (2)

The key of obtaining high order accuracy is to compute the integral term in
function (2) accurately. However, when xi are small values, there is little infor-
mation for u(s). To overcome this difficulty, we transform the integral interval
from [−1, xi] to [−1, 1] by a simple linear transformation:

s =
xi + 1

2
θ +

xi − 1

2
, θ ∈ [−1, 1]. (3)

then (2) becomes

u(xi) +
xi + 1

2

∫ 1

−1

k(xi, s(xi, θ))u(s(xi, θ))dθ = f(xi), 0 ≤ i ≤ n. (4)

Now, we will introduce Clenshaw-Curtis quadrature rule∫ 1

−1

f(x)dx ≈
n∑
i=0

f(xi)ωi. (5)
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where ωi =
∫ 1

−1
Li(x)dx, Li(x) is the i − th Lagrange interpolation basis func-

tion, {xi}ni=0 and {ωi}ni=0 represent Clenshaw-Curtis points and integral weight
respectively. Here we can use Waldvogel’s method [18] to calculate. The al-
gorithm is based on discrete Fourier transforms. The asymptotic complexity is
O(nlogn).The matlab codes are given as follows:
function [wcc]=Clenshaw_Curtis(n)
N=[1:2:n-1]’;p=length(N);m=n-p;k=[0:m-1]’;
v0=[2./N./(N-2);1/N(end);zeros(m,1)];
v2=-v0(1:end-1)-v0(end:-1:2);wf2=ifft(v2);
% Clenshaw_Curtis
g0=-ones(n,1);g0(1+p)=g0(1+p)+n;
g0(m+1)=g0(1+m)+n;
g=g0/(n̂2-1+mod(n,2));
wcc=ifft(v2+g);
wcc(n+1)=wcc(1);
end

Using Clenshaw-Curtis quadrature rule (5) to approximate the integral term
in equation (4), we have

u(xi) +
xi + 1

2

n∑
j=0

k(xi, s(xi, θj))u(s(xi, θj))ωj ≈ f(xi), 0 ≤ i ≤ n. (6)

In general, {s(xi, θj)} are not coincide with the collocation points {xi}ni=0 .
Here we assume that {xi}ni=0 and {θi}ni=0 are the same set of Clenshaw-Curtis
points on [−1, 1]. i.e. xi = θi, for 0 ≤ i ≤ n. We expand u(x) using Lagrange
interpolation polynomial, i.e.

u(x) ≈
n∑
p=0

u(xp)Lp(x) := In(u), (7)

where Lp(x) is the p−th Lagrange interpolation basis function based on Clenshaw-
Curtis points {xi}ni=0, and then we have

u(s(xi, θ)) ≈
n∑
p=0

u(xp)Lp(s(xi, θ)). (8)

Let ui are the approximate values of u(xi), we get the discrete format of (1):

ui +
xi + 1

2

n∑
j=0

ωjk(xi, s(xi, θj))

(
n∑
p=0

upLp(s(xi, θj))

)
= f(xi), 0 ≤ i ≤ n. (9)

ui +
xi + 1

2

n∑
j=0

uj

n∑
p=0

ωpk(xi, s(xi, θp))Lj(s (xi, θp)) = f(xi), 0 ≤ i ≤ n. (10)
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Denoting Un = (u0, u1, . . . , un)
T and Fn = (f(x0), f(x1), . . . , f(xn))

T , we
can write the equations (10) in matrix form:

Un +AUn = Fn. (11)
where the entries of the matrix A is given by

ai,j =
xi + 1

2

n∑
p=0

ωpk(xi, s(xi, θp))Lj(s(xi, θp))

3. Convergence analysis

In this section, a convergence analysis for the numerical schemes (10) will be
provided. To this end ,we begin with introducing some useful Lemmas.

Lemma 3.1 (Estimates for the interpolation error[19]). Assume that u ∈ Hm(I)
and denote In(u) is interpolation polynomial associated with the (n + 1)-points
Clenshaw-Curtis points {xi}ni=0, for m ≥ 1, the following estimates hold

∥u− In(u)∥Hl(I) ≤ Cnl−m∥u∥Hm(I), 0 ≤ l ≤ 1.

Lemma 3.2 (Sobolev Inequality[19]). Let (a, b) ⊂ R be a bounded interval of
the real line. For each function u ∈ H1(a, b) , the following inequality hold

∥u∥L∞(a,b) ≤ (
1

a+ b
+ 2)1/2∥u∥1/2L2(a,b)∥u∥

1/2
H1(a,b).

Lemma 3.3 (Gronwall inequality[16, 20]). If a non-negative integrable function
E(t) satisfies

E(t) ≤ C1

∫ 1

−1

E(s)ds+G(t),−1 ≤ t ≤ 1.

where G(t) is an integrable function, then
∥E∥Lp(I) ≤ C∥G∥Lp(I), p ≥ 1.

Lemma 3.4 ([21, 22]). Let Fi(x), i = 0, 1, . . . , n be the Lagrange interpolation
polynomials associated with n+ 1 point Clenshaw-Curtis points {xi}ni=0, then

∥In∥L∞(−1,1) := max
x∈[−1,1]

n∑
i=0

|Fi(x)| = O(logn).

Now, we begin to analyze the convergence of numerical schemes (9).

Theorem 3.5 (Integration error from Clenshaw-Curtis quadrature). Let u(x) ∈
Hm(I),m ≥ 1 , and

∑n
i=0 u(x)ωi is the approximation of

∫ 1

−1
u(x)dx under the

Clenshaw-Curtis quadrature rule. Then there exists a constant C independent
of n such that: ∣∣∣∣∣

∫ 1

−1

u(x)dx−
n∑
i=0

u(xi)ωi

∣∣∣∣∣ ≤ Cnl−m∥u∥Hm(I). (12)
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Proof. We konw that∫ 1

−1

In(x)dx =

∫ 1

−1

n∑
i=0

u(xi)Li(x)dx =

n∑
i=0

u(xi)

∫ 1

−1

Li(x)dx =

n∑
i=0

u(xi)ωi

so we have

∣∣∣∣∣
∫ 1

−1

u(x)dx−
n∑
i=0

u(xi)ωi

∣∣∣∣∣ =
∣∣∣∣∫ 1

−1

u(x)dx−
∫ 1

−1

In(x)dx

∣∣∣∣
≤
∫ 1

−1

|u(x)− In(x)|dx

≤ 2|u(x)− In(x)|

using Lemmas 1, we get∣∣∣∣∣
∫ 1

−1

u(x)dx−
n∑
i=0

u(xi)ωi

∣∣∣∣∣ ≤ Cnl−m∥u∥Hm(I).

□

Theorem 3.6. Assume that u(x) ∈ Hm(I) is the exact solution of Volterra
integral equation (1) , and un(x) :=

∑n
i=0 uiLi(x) is the approximate solution

achived by using Clenshaw-Curtis collocation method from (10),and

un(x) :=

n∑
i=0

uiLi(x). (13)

then for m ≥ 1,

∥u− un∥L∞(I) ≤ Cnl−m(logn)∥u∥Hm(I) + Cn1/2−m∥u∥Hm(I). (14)

provided that n is sufficiently large, where C is a constant independent of n .

Proof. Adding to the notation(13), then equation 9 can be written as

ui +
xi + 1

2

n∑
j=0

ωjk(xi, s(xi, θj))un (s(xi, θj)) = f(xi), 0 ≤ i ≤ n. (15)

adding one integral to both sides of (15) and change the order, we have

ui +
xi + 1

2

∫ 1

−1

k(xi, s(xi, θ))un(s(xi, θ))dθ = f(xi)− Y1(xi), (16)

where

Y1(x) :=
x+ 1

2

∫ 1

−1

k(x, s(x, θ))u(s(x, θ))dθ −
n∑
j=0

ωjk(x, s(x, θj))un(s(x, θj))

 .

(17)
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Through the inverse process of (3), equation (16) can be transformed into

ui +

∫ xi

−1

k(xi, s)un(s)ds = f(xi) + Y1(xi), (18)

multiplying Li(x) on the both sides of (18) and summing up from 0 to n yield
n∑
i=0

uiLi(x) +

n∑
i=0

∫ xi

−1

k(xi, s)un(s)dsLi(x) =

n∑
i=0

f(xi)Li(x) +

n∑
i=0

Y1(xi)Li(x)

that is
un(x) + In

(∫ x

−1

k(x, s)un(s)ds

)
= In(f) + In(Y1), (19)

combining (19) and (1), we deduce that

e(x)+

(
In

(∫ x

−1

k(x, s)un(s)ds

)
−
∫ x

−1

k(x, s)u(s)ds

)
= In(f)−f(x)+In(Y1),

(20)
where e(x) = un(x)− u(x) is an error function. It follows that

e(x) + In

(∫ x

−1

k(x, s)un(s)ds

)
− In

(∫ x

−1

k(x, s)u(s)ds

)
= −In

(∫ x

−1

k(x, s)u(s)ds

)
+

∫ x

−1

k(x, s)u(s)ds+ In(f)− f(x) + In(Y1) (21)

that is

e(x) + In

(∫ x

−1

k(x, s)e(s)ds

)
= In

(
f(x)−

∫ x

−1

k(x, s)u(s)ds

)
+

(∫ x

−1

k(x, s)u(s)ds− f(x)

)
+ In(Y1)

(22)

from (1) we have

f(x)−
∫ x

−1

k(x, t)u(t)dt = u(x),

then (22) can turn into

e(x) + In

(∫ x

−1

k(x, s)e(s)ds

)
= In(u)− u(x) + In(Y1). (23)

Adding an integration to both sides of (23) and changing the order ,we have

e(x) +

∫ x

−1

k(x, s)e(s)ds

=

∫ x

−1

k(x, s)e(s)ds− In

(∫ x

−1

k(x, s)e(s)ds

)
+ (In(u)− u)(x) + In(Y1) (24)
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Denoting

Y2(x) : = (In(u)− u)(x),

Y3(x) : =

∫ x

−1

k(x, s)e(s)ds− In

(∫ x

−1

k(xi, s)e(s)ds

)
,

G(x) : = In(Y1) + Y2(x) + Y3(x),

then (24)can be write as

e(x) +

∫ x

−1

k(x, s)e(s)ds = In(Y1) + Y2(x) + Y3(x) = G(x) (25)

so we have
|e(x)| ≤ max

(x,s)∈[−1,1]
|k(x, s)|

∫ x

−1

|e(s)|ds+ |G(x)|, (26)

from Lemma 3, we can deduce that

∥e∥L∞(I) ≤ C∥G(x)∥L∞(I) ≤ C
(
∥In(Y1)∥L∞(I) + ∥Y2(x)∥L∞(I) + ∥Y3(x)∥L∞(I)

)
.

(27)
Now, we come to estimate each term of the right hand side of the above in-

equality one by one. First, for the evaluate of Y1(x) , with the help of Lemmas
1 and Theorem 1, we get

|Y1(x)| ≤ Cnl−m∥k(x, s(x, θ)un(s(x, θ))∥Hm(I)

≤ Cnl−m max
(x,s)∈[−1,1]

|k(x, s)|∥un∥Hm(I)

≤ Cnl−m∥un∥Hm(I) (28)

then reckon ∥In(Y1)∥L∞(I) , using Lemmas 4 , we have

∥In(Y1)∥L∞(I) ≤ ∥In∥L∞(I)∥Y1∥L∞(I) ≤ Cnl−m(logn)∥un∥Hm(I) (29)

For the evaluate of ∥Y2∥L∞(I), applying Lemmas 1 and Lemmas 3 , we have

∥Y2∥L∞(I) ≤ C∥Y2∥1/2L2(I)∥Y2∥
1/2
H1(I)

≤
(
Cn−m∥u∥Hm(I)Cn

1−m∥u∥Hm(I)

)1/2
≤ Cn1/2−m∥u∥Hm(I) (30)

similarly, we let m = 1 , for the evaluate of ∥Y3∥L∞(I)

∥Y3∥L∞(I) ≤ C∥Y3∥1/2L2(I)∥Y3∥
1/2
H1(I)

≤ Cn−1/2

∥∥∥∥∫ x

−1

k(x, s)e(s)ds

∥∥∥∥
H1(I)

≤ Cn−1/2

∥∥∥∥k(x, x)e(x)− ∫ x

−1

kx(x, s)e(s)ds

∥∥∥∥
L2(I)
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≤ Cn−1/2

(
max
∥x∥≤1

∥k(x, x)∥+ max
∥x∥≤1

∥∂xk∥L2(I)

)
∥e∥L2(I)

≤ Cn−1/2∥e(x)∥L2(I)

≤ Cn−1/2∥e(x)∥L∞(I) (31)

From the above estimates, when n is sufficiently large, we can get
∥e∥L∞(I)

≤ C1n
l−m(logn)

(
∥u∥Hm(I) + ∥e∥L∞(I)

)
+ C2n

1/2−m∥u∥Hm(I)

+ C3n
−1/2∥e∥L∞(I)

this implies

∥e∥L∞(I) ≤ Cnl−m(logn)∥u∥Hm(I) + Cn1/2−m∥u∥Hm(I)

□

4. Numerical examples

Example 4.1. Consider the Volterra integral equation

u(x) +

∫ x

−1

k(x, s)u(s)ds = f(x), x ∈ [−1, 1].

Where k(x, s) = xs, f(x) = e−x
2

+ 1
2xe

−1 − 1
2xe

−x2 , the exact solution is u =

e−x
2 . The numerical results which obtained by Clenshaw-Curtis collocation

method are shown in Figure 1. These result indicate that the desired spectral
accuracy is obtained when n = 20.

Figure 1. The errors versus the number of collocation points
in L∞ norm(left). Compassion between approximate solutin
and the exact solution(right).
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Example 4.2. Consider the Volterra integral equation with the proportional
delay

u(x) = f(t) +

∫ x

0

k(x, s)u(qs)ds, x ∈ [−1, 1].

Where q = 1
2 , k(x, s) = exs, f(x) = e4x + 1

x+2 (e
−x−4 − ex

2+2x−2), the exact
solution is u = e4x. Numerical results are displayed in Figure 2.

Figure 2. The errors versus the number of collocation points
in L∞ norm(left). Compassion between approximate solutin
and the exact solution(right).

Example 4.3. Consider the Volterra integral equation

u(x) +

∫ x

−1

k(x, s)u(s)ds = f(x), x ∈ [−1, 1].

Where k(x, s) = exs, f(x) = e4x + 1
x+4 (e

x(x+4) − e−(x+4)) , the exact solution
isu = e4x . We use the numerical scheme (10).The result are displayed in Figure
3.

Compared with Example5.1 in Tang Tao’s literature [16], the convergence
accuracy obtained by Clenshaw-Curtis collocation method is better than that
obtained by Gauss-Legendre collocation method. Numerical errors with several
values of are displayed in the following table

n 6 8 10 12 14
Eg.3 3.36e-02 1.2e-03 3.31e-05 6.53e-07 1.01e-08

Eg.5.1 in [16] 3.66e-01 1.88e-2 6.57e-04 1.65e-05 3.11e-07
n 16 18 20 22 24

Eg.3 1.24e-10 1.26e-12 4.26e-14 4.27e-14 3.55e-14
Eg.5.1 in [16] 4.57e-09 5.37e-11 5.19e-11 5.68e-14 4.26e-14
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Figure 3. The errors versus the number of collocation points
in L∞ norm(left). Compassion between approximate solutin
and the exact solution(right).

5. Conclusions

In this paper, Clenshaw-Curtis spectral collocation method is used to solve the
second kind Volterra integral equations. Clenshaw-Curtis collocation points and
integral weights are easier to calculate than Gauss points and integral weights.
Clenshaw-Curtis quadrature formula is used to discretize the integral term in
the equation to get the collocation solution. Finally the result of the numerical
examples illustrate the efficiency of the method.
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