• Title/Summary/Keyword: Quadratic integral equation

Search Result 27, Processing Time 0.015 seconds

A QUADRATIC INTEGRAL EQUATION IN THE SPACE OF FUNCTIONS WITH TEMPERED MODULI OF CONTINUITY

  • PENG, SHAN;WANG, JINRONG;CHEN, FULAI
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.351-363
    • /
    • 2015
  • In this paper, we investigate existence of solutions to a class of quadratic integral equation of Fredholm type in the space of functions with tempered moduli of continuity. Two numerical examples are given to illustrate our results.

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.

Exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics

  • Zhang, Xiaosong;Zhang, Xiaoxian
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.279-296
    • /
    • 2008
  • This paper presents an exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary integral equation analysis is given in a closed form. It is proven that using the exact integration for discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two numerical examples are implemented to verify the correctness of the derived exact integration.

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT

  • Darwish, Mohamed Abdalla;Henderson, Johnny;O'Regan, Donal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.539-553
    • /
    • 2011
  • We study the solvability of a perturbed quadratic functional-integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.

FERMAT'S EQUATION OVER 2-BY-2 MATRICES

  • Chien, Mao-Ting;Meng, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-616
    • /
    • 2021
  • We study the solvability of the Fermat's matrix equation in some classes of 2-by-2 matrices. We prove the Fermat's matrix equation has infinitely many solutions in a set of 2-by-2 positive semidefinite integral matrices, and has no nontrivial solutions in some classes including 2-by-2 symmetric rational matrices and stochastic quadratic field matrices.