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SOLVABILITY OF SOME ENTANGLED

DIOPHANTINE EQUATIONS

Poo-Sung Park

Abstract. We show that the Diophantine equation

aQ(x1, x2) + bQ(x3, x4) + cQ(x5, x6) = abc

has integral solutions for arbitrary positive integers a, b, c when Q(x, y) is

a norm form for some imaginary quadratic fields.

1. Introduction

The study on Diophantine equations is to find out whether f(x1, x2, . . . , xn)
= k has an integral solution, where f is a specific polynomial and k is an integer.
But little has been known the situation about f and k varying together, that
is, f(x1, x2, . . . , xn) = Nf , where Nf is an integer determined by f . Let us call
such equations entangled.

For example, the family of Diophantine equations of the form

ax2
1 + bx2

2 + cx2
3 + dx2

4 = abcd

is entangled. If RHS is, for example, a instead of abcd, the problem is trivial.
The equation is not always solvable for integers a, b, c, d. It has no solution for
a = b = 3 and c = d = 7. That is,

3x2
1 + 3x2

2 + 7x2
3 + 7x2

4 6= 3 · 3 · 7 · 7
for all integers xi.

Based on some numerical results using computers, the author conjectures
that the entangled Diophantine equation

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 = a1a2a3a4a5

has an integral solution for arbitrary positive integers a1, a2, a3, a4, a5.
We may consider this Diophantine equation as a sumset problem. That is, if

S is the set of squares of integers, it is a problem asking whether the weighted

sumset
∑5

i=1 ai · S contains
∏5

i=1 ai or not, where ai · S = {ais | s ∈ S}.
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In the present article we will show that the sumset problems are solvable for
S = {x2 + ky2 |x, y ∈ Z} and S = {x2 + xy + ky2 |x, y ∈ Z} with k = 1, 2, 3:
For example, if S is the set of sums of two squares, then a · S + b · S + c · S
contains abc. Thus,

a(x2
1 + x2

2) + b(x2
3 + x2

4) + c(x2
5 + x2

6) = abc

has an integral solution for arbitrary positive integers a, b, c.
To prove these problems we use the unique factorization property of rings

of algebraic integers of some quadratic fields and representation theory of local
lattices. Another proof for S = {x2 + y2 |x, y ∈ Z} was given by Coppersmith
[1]. His elegant proof uses minimal vectors.

2. Preliminaries

Note that x2
1 +Dx2

2 = (x1 + x2

√
−D)(x1 − x2

√
−D) corresponds to a unary

Hermitian form xx defined over Q(
√
−D). So we can use representation theory

of Hermitian lattices.
Let E be an imaginary quadratic field and let D be a positive squarefree

integer for which E = Q(
√
−D). The ring OE of algebraic integers of E is

generated by 1 and ωD, where ωD =
√
−D if D ≡ 1, 2 (mod 4) or D = 1+

√
−D

2

if D ≡ 3 (mod 4).
A Hermitian space (V,H) is a vector space over E equipped with a Hermitian

map H : V × V → E. A Hermitian lattice L is a finitely generated OE -module
in the Hermitian space (V,H).

Assume that a Hermitian lattice L is free. That is, L has a basis {v1,v2, . . . ,
vn} as a module. Then the n× n-matrix

GL = [H(vi,vj)]1≤i,j≤n

is called the Gram matrix of L. We identify a lattice L and its Gram matrix
GL. We define the discriminant of L by dL = detGL.

If GL is diagonal, we use the brief notation

〈H(v1), H(v2), . . . , H(vn)〉 .
If L = L1 ⊕ L2 and H(v1,v2) = 0 for all vi ∈ Li, then we write

L = L1 ⊥ L2 and GL = GL1
⊥ GL2

.

We say that a number a is represented by L and denote it by a → L if there
exists a vector v ∈ L such that H(v) := H(v,v) = v∗GLv = a, where ∗ means
conjugate transpose. Let ℓ be a Hermitian lattice of rank m. If there exists
a matrix X ∈ Matn×m(OE) such that Gℓ = X∗GLX , then we say that ℓ is
represented by L and denote it by ℓ → L. If two nondegenerate lattices ℓ and
L satisfy ℓ → L and L → ℓ, we say that ℓ is isometric to L and denote it by
ℓ ∼= L.

Let p be a prime spot (possibly, ∞). Define Ep by E ⊗Q Qp and OEp
by

OE ⊗Z Zp for each p. Note that Ep has a unique involution (see [3], [13]).
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Thus we can define Hermitian lattices over Ep. We call Lp = OEp
⊗OE

L a
localization of L. We define the class of L by

clsL = {M | M ∼= L}
and the genus of L by

genL = {M | Mp
∼= Lp for all p}.

It is known that genL is the union of the finite number of classes of lattices.
That is,

genL = clsL1 ∪ clsL2 ∪ · · · ∪ clsLn

for some L1, L2, . . . , Ln ∈ gen(L). If ℓp → Lp for all prime spots p, then ℓ → Li

for some Li ∈ genL. There is a systematic method [3], [6] to check whether
ℓp → Lp for each prime p.

If H(v) > 0 for all v(6= 0) ∈ L over E, we call L positive definite. If a
positive definite Hermitian lattice L represents all positive integers, we say that
L is universal. Similarly, if L represents all positive definite m-ary Hermitian
lattice, we say that L is m-universal.

The universal Hermitian lattices were studied by many mathematicians [2],
[5], [8], [11]. A criterion for universality was obtained by the author and his
colleagues [7].

All the ternary and quaternary 2-universal Hermitian lattices were found by
the author and M.-H. Kim (see Table 1) [9].

Table 1. 2-universal Hermitian lattices of rank 3 and 4

Q(
√
−1) : 〈1, 1, 1〉 , 〈1, 1〉 ⊥

[

2 1
1 2

]

Q(
√
−2) : 〈1, 1〉 ⊥

[

2 −1 + ω2

−1− ω2 2

]

Q(
√
−3) : 〈1, 1, 1〉 , 〈1, 1, 2〉

Q(
√
−7) : 〈1, 1, 1〉

Q(
√
−11) : 〈1, 1〉 ⊥

[

2 ω11

ω11 2

]

Refer [4] or [10] for unexplained notations and terminology.

3. Main results

Now we show that the Diophantine equation

aQ(x1, x2) + bQ(x3, x4) + cQ(x5, x6) = abc

is solvable for some norm forms Q(x, y) = x2 + ky2 or Q(x, y) = x2 +xy+ ky2.
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Lemma 3.1. Let E = Q(
√
−D) be an imaginary quadratic field with D =

1, 2, 3, 7, or 11. If a positive definite binary Hermitian lattice ℓ is given, then

〈1〉 ⊥ ℓ represents dℓ.

Proof. Since the class number of E = Q(
√
−D) is 1 for D = 1, 2, 3, 7, 11, all

Hermitian lattices over E are free.
Note that 〈1, 1, 1〉 is 2-universal overQ(

√
−D) withD = 1, 3, 7. We postpone

the case of D = 2, 11.
Let ℓ =

[

a b

b c

]

be a positive definite binary Hermitian lattice. Then

a ss+ b st+ b st+ c tt = xx+ yy + zz

for some linear forms x, y, z ∈ OE [s, t]. If we set x = αs+ βt, then
[

a b

b c

]

−
[

αα αβ

αβ ββ

]

→
[

1 0
0 1

]

.

Thus,
[

a− αα b− αβ

b − αβ c− ββ

]

= X∗
[

1 0
0 1

]

X

for some X ∈ Mat2×2(OE).
Comparing determinants of both sides, we obtain that

det

[

a− αα b− αβ

b− αβ c− ββ

]

= γγ

for γ = det(X). Rearranging the equality, we obtain that

ac− bb =
[

γ β −α
]





1 0 0
0 a b

0 b c









γ

β

−α



 .

Now consider the cases of D = 2, 11. Let ℓ =
[

a b

b c

]

be a positive definite
binary Hermitian lattice. We know that ℓp → 〈1, 1, 1〉p for all prime spots p.

However, 〈1, 1, 1〉 is not 2-universal. So we need more steps. By [12] we have
that each genus of 〈1, 1, 1〉 is composed of two classes of

Q(
√
−2) : I = 〈1, 1, 1〉 and J = 〈1〉 ⊥

[

2 1 + ω2

1− ω2 2

]

,

Q(
√
−11) : I = 〈1, 1, 1〉 and J = 〈1〉 ⊥

[

2 ω11

ω11 2

]

.

Thus we can guarantee that ℓ → I or ℓ → J .
Since both of I and J can be written as 〈1〉 ⊥ N with dN = 1,

[

a b

b c

]

−
[

αα αβ

αβ ββ

]

→ N

for some α, β ∈ OE .
Comparing determinants of both sides, we obtain the required result. �
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Lemma 3.2. Let k be 1 or 2. If a prime p is not of the form a2 + kb2 and p

divides a number x2 + ky2, then p divides both x and y.

Proof. Suppose, to the contrary, that p does not divide x or y.
Since Z[

√
−k] is a UFD, x2 + ky2 = (x +

√
−ky)(x −

√
−ky) is a unique

factorization. If p is an irreducible element in Z[
√
−k], then p divides both

x and y. Thus, p should be a product of non-units in Z[
√
−k]. Assume that

p = (a +
√
−kb)(c +

√
−kd) for some a, b, c, d ∈ Z. Comparing norms of both

sides, we obtain

p2 = (a2 + kb2)(c2 + kd2).

Thus, p is of the form a2 + kb2, since p is a prime in Z. It contradicts the
assumption. �

Lemma 3.3. Let k be 1, 2 or 3. If a prime p is not of the form a2 + ab+ kb2

and p divides a number x2 + xy + ky2, then p divides both x and y.

Proof. Since Z[ 1+
√
1−4k
2

] is a UFD, the proof is almost identical to Lemma
3.2. �

Theorem 3.4. Let k be 1, 2, or 3. Each of the following Diophantine equations

has integral solutions for any positive integers a, b and c.

a(x2
1 + kx2

2) + b(x2
3 + kx2

4) + c(x2
5 + kx2

6) = abc,

a(x2
1 + x1x2 + kx2

2) + b(x2
3 + x3x4 + kx2

4) + c(x2
5 + x5x6 + kx2

6) = abc.

Proof. We will give a proof for the first equation only for k = 1 because the
proofs for other cases are similar. We may assume that c is not divisible by any
prime p of the form α2 + β2. If such a prime p = α2 +β2 exists, then solutions
yi’s of the following equation

a(y21 + y22) + b(y23 + y24) +
c

p
(y25 + y26) = ab

c

p

yield solutions to the original equation by equality

x2
i + x2

j = (α2 + β2)(y2i + y2j ) = (αyi + βyj)
2 + (αyj − βyi)

2.

Let ℓ = [ ac 0
0 bc ]. Considering ℓ as a Hermitian lattice over Q(

√
−1), we

conclude that the Diophantine equation

x2
1 + x2

2 + ac(x2
3 + x2

4) + bc(x2
5 + x2

6) = abc2

has an integral solution by Lemma 3.1. Then c | x2
1 + x2

2. Since every prime
factor of c is not sum of two squares, we conclude that c | x1 and c | x2 by
Lemma 3.2. Now canceling c from both sides, we obtain the required result.

Similar arguments can be applied to Q(
√
−D) when D = 2, 3, 7, and 11.

Thus, other equations are verified to be solvable except for x2 + 3y2.
We conclude that two quadratic forms x2 + 3y2 and x2 + xy + y2 represent

all the same numbers. So we are done. �
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Remark 3.5. The author conjectures that the Diophantine equation

a1(x
2
1 + kx2

2) + a2(x
2
3 + kx2

4) + a3(x
2
5 + kx2

6) = a1a2a3

has an integral solution for arbitrary positive integers a1, a2, a3 and k = 4, 5, 6,
7, 8, and 10.

Remark 3.6. The author also conjectures that the Diophantine equation

a1(x
2
1 + x1x2 + kx2

2) + a2(x
2
3 + x3x4 + kx2

4) + a3(x
2
5 + x5x6 + kx2

6) = a1a2a3

has an integral solution for arbitrary positive integers a1, a2, a3 and k = 4, 5, 6,
and 8.
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