• Title/Summary/Keyword: Quadratic function

Search Result 792, Processing Time 0.028 seconds

Understanding of Teaching Strategies on Quadratic Functions in Chinese Mathematics Classrooms

  • Huang, Xingfeng;Li, Shiqi;An, Shuhua
    • Research in Mathematical Education
    • /
    • v.16 no.3
    • /
    • pp.177-194
    • /
    • 2012
  • What strategies are used to help students understand quadratic functions in mathematics classroom? In specific, how does Chinese teacher highlight a connection between algebraic representation and graphic representation? From October to November 2009, an experienced teacher classroom was observed. It was found that when students started learning a new type of quadratic function in lessons, the teacher used two different teaching strategies for their learning: (1) Eliciting students to plot the graphs of quadratic functions with pointwise approaches, and then construct the function image in their minds with global approaches; and (2) Presenting a specific mathematical problem, or introducing conception to elicit students to conjecture, and then encouraging them to verify it with appoint approaches.

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

A Study on the Development of Computer Assisted Instruction for the Middle School Mathematics Education - Focused on the graph of quadratic function - (중학교 수학과 CAI 프로그램 개발 연구 -이차함수의 그래프를 중심으로-)

  • 장세민
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.151-163
    • /
    • 1998
  • In mathematics education, teaching-learning activity can be divided largely into the understanding the mathematical concepts, derivation of principles and laws, acquirement of the mathematical abilities. We utilize various media, teaching tools, audio-visual materials, manufacturing materials for understanding mathematical concepts. But sometimes we cannot define or explain correctly the concepts as well as the derivation of principles and laws by these materials. In order to solve the problem we can use the computer. In this paper, character and movement state of various quadratic function graph types can be used. Using the computers is more visible than other educational instruments like blackboards, O.H.Ps., etc. Then, students understand the mathematical concepts and the correct quadratic function graph correctly. Consquently more effective teaching-learning activity can be done. Usage of computers is the best method for improving the mathematical abilities because computers have functions of the immediate reaction, operation, reference and deduction. One of the important characters of mathematics is accuracy, so we use computers for improving mathematical abilities. This paper is about the program focused on the part of "the quadratic function graph", which exists in mathematical curriculum the middle school. When this program is used for students, it is expected the following educational effect. 1, Students will have positive thought by arousing interests of learning because this program is composed of pictures, animations with effectiveness of sound. 2. This program will cause students to form the mathematical concepts correctly. 3. By visualizing the process of drawing the quadratic function graph, students understand the quadratic function graph structually. 4. Through the feedback, the recognition ability of the trigonometric function can be improved. 5. It is possible to change the teacher-centered instruction into the student-centered instruction. For the purpose of increasing the efficiencies and qualities of mathmatics education, we have to seek the various learning-teaching methods. But considering that no computer can replace the teacher′s role, tearchers have to use the CIA program carefully.

  • PDF

OPTIMALITY CONDITIONS AND AN ALGORITHM FOR LINEAR-QUADRATIC BILEVEL PROGRAMMING

  • Malhotra, Neelam;Arora, S.R.
    • Management Science and Financial Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-56
    • /
    • 2001
  • This linear fractional - quadratic bilevel programming problem, in which the leader's objective function is a linear fractional function and the follower's objective function is a quadratic function, is studied in this paper. The leader's and the follower's variables are related by linear constraints. The derivations of the optimality conditions are based on Kuhn-Tucker conditions and the duality theory. It is also shown that the original linear fractional - quadratic bilevel programming problem can be solved by solving a standard linear fractional program and the optimal solution of the original problem can be achieved at one of the extreme point of a convex polyhedral formed by the new feasible region. The algorithm is illustrated with the help of an example.

  • PDF

A Discourse Analysis of Middle School Students in Mathematical Modeling Teaching and Learning (수학적 모델링 교수·학습에서 중학생들의 담화 분석)

  • Chang, HyunSuk
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.45-65
    • /
    • 2020
  • This research is an analysis of communication that occurs during the quadratic function teaching and learning process of middle school students, which reflects mathematical modeling. For an in-depth analysis of the communication, Sfard(2008)'s discourse theory and language analysis framework were applied. A quadratic function mathematical modeling teaching and learning were conducted for the week second (1 hour) in June 2019 for students who studied the concept of a quadratic function and who passed a specified period (3 months). The results are as follows. First, The commo-gnitive conflict occurred because of differences in prior knowledge other than quadratic function among students. Second, in the course of communication, knowledge was expanded through problem-solving from different perspectives. These results can be interpreted as allowing students to clearly reveal problems in the communication process based on their understanding of the concept of quadratic functions and to facilitate cooperation among students. of the concept of quadratic functions and to facilitate cooperation among students.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

Edge-Preserving Iterative Reconstruction in Transmission Tomography Using Space-Variant Smoothing (투과 단층촬영에서 공간가변 평활화를 사용한 경계보존 반복연산 재구성)

  • Jung, Ji Eun;Ren, Xue;Lee, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.219-226
    • /
    • 2017
  • Penalized-likelihood (PL) reconstruction methods for transmission tomography are known to provide improved image quality for reduced dose level by efficiently smoothing out noise while preserving edges. Unfortunately, however, most of the edge-preserving penalty functions used in conventional PL methods contain at least one free parameter which controls the shape of a non-quadratic penalty function to adjust the sensitivity of edge preservation. In this work, to avoid difficulties in finding a proper value of the free parameter involved in a non-quadratic penalty function, we propose a new adaptive method of space-variant smoothing with a simple quadratic penalty function. In this method, the smoothing parameter is adaptively selected for each pixel location at each iteration by using the image roughness measured by a pixel-wise standard deviation image calculated from the previous iteration. The experimental results demonstrate that our new method not only preserves edges, but also suppresses noise well in monotonic regions without requiring additional processes to select free parameters that may otherwise be included in a non-quadratic penalty function.