• Title/Summary/Keyword: Quadratic Forms

Search Result 103, Processing Time 0.02 seconds

A LOWER BOUND FOR THE NUMBER OF SQUARES WHOSE SUM REPRESENTS INTEGRAL QUADRATIC FORMS

  • Kim, Myung-Hwan;Oh, Byeong-Kweon
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.651-655
    • /
    • 1996
  • Lagrange's famous Four Square Theorem [L] says that every positive integer can be represented by the sum of four squares. This marvelous theorem was generalized by Mordell [M1] and Ko [K1] as follows : every positive definite integral quadratic form of two, three, four, and five variables is represented by the sum of five, six, seven, and eight squares, respectively. And they tried to extend this to positive definite integral quadratic forms of six or more variables.

  • PDF

QUADRATIC FORMS ON THE $\mathcal{l}^2$ SPACES

  • Chung, Phil-Ung
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.471-478
    • /
    • 2007
  • In this article we shall introduce several operators on the reproducing kernel spaces and investigate quadratic forms on the $\mathcal{l}^2$ space. Using these operators we shall obtain a particular solution of a system of quadratic equations(1.5). Finally we can find an approximate solution of(1.5) by optimization of a nonnegative biquadratic polynomial.

ON THE PUBLIC KEY CRYPTOSYSTEMS OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • Kim, Young-Tae;Kim, Chang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.577-586
    • /
    • 2006
  • In this paper we will propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structures of class SEMIGROUPS of imaginary quadratic orders which were given by Zanardo and Zannier [8], and we will give a general algorithm for calculating power of ideals/classes via the Dirichlet composition of quadratic forms which is applicable to cryptography in the class semigroup of imaginary quadratic non-maximal order and revisit the cryptosystem of Kim and Moon [5] using a Zanardo and Zannier [8]'s quantity as their secret key, in order to analyze Jacobson [7]'s revised cryptosystem based on the class semigroup which is an alternative of Kim and Moon [5]'s.

THE ARTINIAN POINT STAR CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Kim, Young-Rock;Shin, Yong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.645-667
    • /
    • 2019
  • It has been little known when an Artinian point quotient has the strong Lefschetz property. In this paper, we find the Artinian point star configuration quotient having the strong Lefschetz property. We prove that if ${\mathbb{X}}$ is a star configuration in ${\mathbb{P}}^2$ of type s defined by forms (a-quadratic forms and (s - a)-linear forms) and ${\mathbb{Y}}$ is a star configuration in ${\mathbb{P}}^2$ of type t defined by forms (b-quadratic forms and (t - b)-linear forms) for $b=deg({\mathbb{X}})$ or $deg({\mathbb{X}})-1$, then the Artinian ring $R/(I{\mathbb_{X}}+I{\mathbb_{Y}})$ has the strong Lefschetz property. We also show that if ${\mathbb{X}}$ is a set of (n+ 1)-general points in ${\mathbb{P}}^n$, then the Artinian quotient A of a coordinate ring of ${\mathbb{X}}$ has the strong Lefschetz property.

QUADRATIC TRANSFORMATIONS INVOLVING HYPERGEOMETRIC FUNCTIONS OF TWO AND HIGHER ORDER

  • Choi, June-Sang;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.71-77
    • /
    • 2006
  • By applying various known summation theorems to a general transformation formula based upon Bailey's transformation theorem due to Slater, Exton has obtained numerous and new quadratic transformations involving hypergeometric functions of order greater than two(some of which have typographical errors). We aim at first deriving a general quadratic transformation formula due to Exton and next providing a list of quadratic formulas(including the corrected forms of Exton's results) and some more results.

  • PDF

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

THE NUMBER OF REPRESENTATIONS BY A TERNARY SUM OF TRIANGULAR NUMBERS

  • Kim, Mingyu;Oh, Byeong-Kweon
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • For positive integers a, b, c, and an integer n, the number of integer solutions $(x,y,z){\in}{\mathbb{Z}}^3$ of $a{\frac{x(x-1)}{2}}+b{\frac{y(y-1)}{2}}+c{\frac{z(z-1)}{2}}=n$ is denoted by t(a, b, c; n). In this article, we prove some relations between t(a, b, c; n) and the numbers of representations of integers by some ternary quadratic forms. In particular, we prove various conjectures given by Z. H. Sun in [6].

A SIMPLE PROOF FOR JI-KIM-OH'S THEOREM

  • Byeong Moon Kim;Ji Young Kim
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.181-188
    • /
    • 2023
  • In 1911, Dubouis determined all positive integers represented by sums of k nonvanishing squares for all k ≥ 4. As a generalization, Y.-S. Ji, M.-H. Kim and B.-K. Oh determined all positive definite binary quadratic forms represented by sums of k nonvanishing squares for all k ≥ 5. In this article, we give a simple proof for Ji-Kim-Oh's theorem for all k ≥ 10.

A FUNCTIONAL EQUATION RELATED TO QUADRATIC FORMS WITHOUT THE CROSS PRODUCT TERMS

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.219-225
    • /
    • 2008
  • In this paper, we obtain the general solution and the stability of the 2-dimensional vector variable quadratic functional equation f( x + y, z - w) + f(x - y, z + w) = 2f(x, z ) + 2f(y, ${\omega}$). The quadratic form f( x, y) = $ax^2$ + $by^2$ without cross product terms is a solution of the above functional equation.