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THE ARTINIAN POINT STAR CONFIGURATION

QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

Young-Rock Kim† and Yong-Su Shin‡

Abstract. It has been little known when an Artinian point quotient

has the strong Lefschetz property. In this paper, we find the Artinian
point star configuration quotient having the strong Lefschetz property.

We prove that if X is a star configuration in P2 of type s defined by forms
(a-quadratic forms and (s−a)-linear forms) and Y is a star configuration

in P2 of type t defined by forms (b-quadratic forms and (t − b)-linear

forms) for b = deg(X) or deg(X) − 1, then the Artinian ring R/(IX + IY)
has the strong Lefschetz property. We also show that if X is a set of

(n+1)-general points in Pn, then the Artinian quotient A of a coordinate

ring of X has the strong Lefschetz property.

1. Introduction

Let R = k[x1, . . . , xn] be an n-variable polynomial ring over a field k of
characteristic 0. A standard graded k-algebra A = R/I = ⊕i≥0Ai has the weak
Lefschetz property (WLP) if there is a linear form ` such that the multiplication
×` : Ai → Ai+1 has maximal rank for every i ≥ 0, and A has the strong
Lefschetz property (SLP) if ×`d : Ai → Ai+d has maximal rank for every i ≥ 0
and d ≥ 1. In this case, ` is called a strong Lefschetz element of A. If d = 1,
then ` is a weak Lefschetz element of A.

The WLP and SLP are strongly connected to many topics in algebraic ge-
ometry, commutative algebra, combinatorics, and representation theory ([19–
25, 29]). In particular, the manuscript [19] gives an overview of the Lefschetz
properties from a different prospective focusing on representation theory and
combinatorial connections and provides a wonderfully comprehensive explo-
ration of the Lefschetz properties.
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The Jordan type is another way to characterize if an Artinian ring has the
WLP or SLP (see [19, 21, 23]). Here the Jordan type of ` ∈ m is the partition
giving the Jordan blocks of the multiplication map ×` : M →M , where M is a
module of A. Recently in 2018, Iarrobino, Marques, and McDaniel [21] provided
a wonderful exploration of a general invariant of an Artinian Gorenstein algebra
A or A-module M , which is the set of Jordan types of elements of the maximal
ideal m of A.

In 2006, Geramita, Migliore, and Sabourin [16] introduced the notion of a
star configuration set of points in P2, called a linear point star configuration
in P2 in this article. The name “star configuration” was first suggested by
A.V. Geramita because the configuration resembles a star for small set of lines
in P2. A more general definition follows [9], where the geometric objects are
called hypersurface configurations. The more general definition of star config-
urations has evolved through a series of papers (see [1,9,26]); in particular, the
codimension 2 case was studied before the general case [1]. It is known that
star configurations have many nice algebraic properties ([4,8]), and at the same
time, can be used to exhibit extremal properties ([2,3,16]). Another application
of star configurations in Pn of codimension 2 is to find the dimension of the
secant variety to the variety of reducible forms based on Terracini’s Lemma in
[31] (see [5, 6, 28] for the definition). In particular, if X and Y are the two star
configurations in Pn of the same type (2, s) defined by the forms of the same
degree with s ≥ 2 (see Definition 2.4), then one can use the following exact
sequence

(1.1) 0→ R/IX∪Y → R/IX ⊕R/IY → R/(IX + IY)→ 0

to find the dimension of the secant line variety to the variety of reducible forms.
In addition, it is unknown if the union of two point star configurations in Pn
of types s and t, respectively, defined by the forms of the same degree with
s, t ≥ n ≥ 2 has generic Hilbert function. Especially, the Hilbert function of
the union of two star configurations in Pn has a close relation to know if an
Artinian star configuration quotient (not necessary point star configuration)
has the WLP or the SLP.

In late 1980’s, Roberts and Roitman [27] introduced special configurations
of points in P2 which they named k-configurations. This definition was first
extended to P3 by Harima [18], and later to all Pn by Geramita, Harima, and
Shin (see [12, 13]). As shown by Roberts and Roitman [27, Theorem 1.2], all
k-configurations of type (d1, . . . , ds) have the same Hilbert function, which can
be computed from the type. This result was later generalized by Geramita,
Harima, and Shin [11, Corollary 3.7] to show that all the graded Betti numbers
of the associated graded ideal IX only depend upon the type. Interestingly,
k-configurations of the same type can have very different geometric properties.
Recently, in [7], Galetto, Shin, and Van Tuyl distinguish k-configurations in
P2 by counting the number of lines that contain ds points of X. In particular,
they show that for all integers m� 0, the number of such lines is precisely the
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value of ∆HmX(mds− 1). Here, ∆HmX(−) is the first difference of the Hilbert
function of the fat points of multiplicity m supported on X.

In this paper, we focus on the following question.

Question 1.1. Let X and Y be point star configurations in Pn of type s and
t with s, t ≥ n, respectively (see Section 2 for the definition).

(a) Does the Artinian quotient R/(IX + IY) have the WLP?
(b) Does the Artinian quotient R/(IX + IY) have the SLP?

Regarding the WLP of the Artinian quotient R/(IX + IY), it is known that
if X and Y are linear point star configurations in Pn of any types, then the
Artinian linear point star configuration R/(IX + IY) has the WLP. In general,
if X1, . . . ,Xr are linear point star configurations in Pn of any types, then the
Artinian ring R/(IX1

+ · · · + IXr
) has the WLP (see Remark 2.12). There is

another Artinian point star configuration quotient having the WLP. If X is a
point star configuration in Pn of type s defined by (s − 1)-linear forms and a
single quadratic form with n ≥ 3, then the Artinian quotient of a coordinate
ring of X has the WLP with a certain condition (see Remark 2.11(a)).

In [23], the authors find the Artinian point configuration quotient having
the SLP, based on the union of two k-configurations in P2, which are contained
in a basic configuration (see [14,18] for the definition of a basic configuration).
In this case, the Artinian ring is Gorenstein, and thus the Hilbert function of
this Artinian ring is symmetric. In [29], the author shows that if X is a point
star configuration in P2 of type s defined by general quadratic forms, and Y is
a point star configuration in P2 of type (s+ 1) defined by s-general quadratic
formsG1, . . . , Gs and a general linear form L, then the Artinian ring R/(IX+IY)
has the WLP with a Lefschetz element L (see [29, Theorem 3.7]). In [22] the
authors generalize this result with the condition deg(Fi) = deg(Gi) ≤ 2 for
every i = 1, . . . , s (see [22, Theorem 4.11]).

In this paper, we show that if X is a finite set of points in P2 and Y is a linear
point star configuration in P2 of type t with t ≥ deg(X) − 1 and s ≥ 3, then
X∪Y has generic Hilbert function under a certain condition (see Corollary 2.7,
Proposition 3.3, and Corollary 3.4). Moreover, if X and Y are finite sets of
points in Pn having generic Hilbert function with σ(X) ≤ σ(Y) and

deg(X) + deg(Y) =

(
n+ (σ(Y)− 1)

n

)
or

(
n+ (σ(Y)− 1)

n

)
+ 1,

then the Artinian point quotient R/(IX + IY) has the SLP (see Theorem 4.4
(b)). As an application, we show that if X is a point star configuration in P2

of type s defined by forms a-quadratic forms and (s− a)-linear forms and Y is
a point star configuration in P2 of type t defined by forms b-quadratic forms
and (t − b)-linear forms with deg(X) ≤ t and b = deg(X) or deg(X) − 1, then
the Artinian point star configuration quotient R/(IX + IY) has the SLP (see
Corollary 4.5). Furthermore, if X is a set of (n+1)-general points in Pn, then the
Artinain quotient of a coordinate ring of X has the SLP (see Proposition 5.3).
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2. The Artinian quotient having the weak Lefschetz property

In this section we will compute the Hilbert functions of the union of some
particular types of k-configurations of points in P2, and introduce certain
Artinian point quotients having the WLP. We first recall the definition of
a k-configuration in P2 and some known results of the k-configurations (see
[11–14,17,27]).

Definition 2.1. A k-configuration in P2 is a finite set X of points in P2 which
satisfy the following conditions: there exist integers 1 ≤ d1 < · · · < dm, and
subsets X1, . . . ,Xm of X, and distinct lines L1, . . . ,Lm ⊆ P2 such that

(a) X =
⋃m
i=1 Xi,

(b) |Xi| = di and Xi ⊂ Li for each i = 1, . . . ,m, and
(c) Li (1 < i ≤ m) does not contain any points of Xj for all j < i.

In this case, the k-configuration in P2 is said to be of type (d1, . . . , dm).

Lemma 2.2. Let X be a k-configuration in P2 of type T = (1, 2, 3, . . . , d −
1, d+1, d+2, . . . , s) with s ≥ 3 and d ≥ 1. Then X has generic Hilbert function

HX : 1

(
1 + 2

2

)
· · ·

(
2 + (s− 2)

2

) (
2 + (s− 1)

2

)
− d → .

Proof. It is immediate from [27, Theorem 1.2] (see also [11, Theorem 3.6]). �

Proposition 2.3 ([29, Proposition 2.6]). If X is a point star configuration in
P2 of type s defined by a-quadratic forms and (s− a)-linear forms with s ≥ 2,
then X has generic Hilbert function as

HX : 1

(
1 + 2

2

)
· · ·

(
2 + (d− 3)

2

)
deg(X) →,

where d = s+ a.

We now recall the definition of a general star configuration in Pn and some
related results.

Definition 2.4 ([26, Definition 2.1]). Let R = k[x0, x1, . . . , xn] be a polynomial
ring over a field k. For positive integers r and s with 1 ≤ r ≤ min{n, s}, suppose
F1, . . . , Fs are general forms in R of degrees d1, . . . , ds, respectively. We call
the variety X defined by the ideal⋂

1≤i1<···<ir≤s

(Fi1 , . . . , Fir )

a star configuration in Pn of type (r, s). In particular, if F1, . . . , Fs are general
linear forms in R, then we call X a linear star configuration in Pn of type (r, s).

Notice that each n-forms Fi1 , . . . , Fin among s-general forms F1, . . . , Fs in
R define di1 · · · din points in Pn for each 1 ≤ i1 < · · · < in ≤ s. Thus the ideal⋂

1≤i1<···<in≤s

(Fi1 , . . . , Fin)
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defines a finite set X of points in Pn with

deg(X) =
∑

1≤i1<i2<···<in≤s

di1di2 · · · din .

In this case, we call X a point star configuration in Pn of type s instead of type
(n, s). In particular, if X is a point star configuration in Pn defined by s-linear
forms L1, . . . , Ls in R, then we call X a linear point star configuration in Pn of
type s.

Remark 2.5. (a) In Definition 2.4, the forms F1, . . . , Fs don’t have to be
general. Indeed, it is enough to assume that all subsets of size 1 ≤
r ≤ min{n+ 1, s} are regular sequences in R, and if H = {F 1, . . . ,F s}
is a collection of distinct hypersurfaces in Pn corresponding to forms
F1, . . . , Fs, respectively, then the hypersurfaces meet properly, by which
we mean that the intersection of any r of these hypersurfaces with
1 ≤ r ≤ min{n, s} has codimension r.

(b) Moreover, any two k-configurations in P2 of the same type have the
same minimal free resolution, and so the same Hilbert function ([11–
14, 17, 27]). We recall that if X is a linear point star configuration in
P2 of type s with 3 ≤ s, then X is a k-configuration in P2 of type
T = (1, 2, . . . , s− 1).

Theorem 2.6 ([26, Theorem 2.3]). Let F1, . . . , Fs be general forms in R =
k[x0, x1, . . . , xn] with s ≥ 2 and n ≥ 2. Then⋂

1≤j1<···<jr≤s

(Fj1 , . . . , Fjr ) =
∑

1≤i1<···<ir−1≤s

( ∏s
`=1 F`

Fi1 · · ·Fir−1

)
for 1 ≤ r ≤ min{n, s}.

The following corollary is the results of Carlini, Guardo, and Van Tuyl [4,
Theorem 2.5], Geramita, Harbourne, and Migliore [8, Proposition 2.9], and
Park and Shin [26, Corollary 2.4].

Corollary 2.7. Let X be a linear point star configuration in Pn of type s with
s ≥ n ≥ 2. Then X has generic Hilbert function, i.e.,

HX(i) = min

{
deg(X),

(
i+ n

n

)}
for every i ≥ 0.

We start with two propositions on the WLP from [10] and provide a com-
plete answer to Question 1.1(a) for the Artinian linear point star configuration
quotient (see Remark 2.12), but it is still unknown for the Artinian general star
configuration quotient. Let X be a finite set of points in Pn and define

σ(X) = min{ i | HX(i− 1) = HX(i)}.
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Proposition 2.8 ([30, Proposition 2.6]). Let X be a point star configuration
in Pn defined by general forms F1, . . . , Fs of degrees 1 ≤ d1 ≤ · · · ≤ ds with
2 ≤ n ≤ s. Then

σ(X) =
[∑s

i=1 di
]
− (n− 1).

Proposition 2.9 ([10, Proposition 5.15]). Let X be a finite set of points in Pn
and let A be an Artinian quotient of the coordinate ring R/IX. Assume that
HA(i) = HX(i) for all 0 ≤ i ≤ σ(X)− 1. Then A has the WLP.

We recall the result about the WLP of the Artinian point quotient in P2 in
[29].

Theorem 2.10 ([29, Theorem 3.3]). Let X and Y be point star configurations
in P2 defined by forms F1, . . . , Fs and G1, . . . , Gt, respectively, with s ≥ t ≥ 3.
Assume that degFi ≤ 2 and degGj ≤ 2 for 1 ≤ i ≤ s and 1 ≤ j ≤ t. If
σ(X) 6= σ(Y), then the Artinian point quotient A = R/(IX + IY) has the WLP.

Remark 2.11. (a) Here is another example of a point star configuration in
Pn having generic Hilbert function with n ≥ 3. Let X be a point star
configuration in Pn of type s defined by (s−1)-linear forms and a single
quadratic form. By Proposition 2.8,

σ(X) = s− n+ 2.

Moreover, by Theorem 2.6, the initial degree of IX is

s− n+ 1 = σ(X)− 1.

Hence if Y is either a finite set of general points in Pn or a point star
configuration in Pn of type t defined by (t−1)-linear forms and a single
quadratic form such that σ(X) < σ(Y), then

HY(d) = HX∪Y(d) =

(
n+ d

d

)
for 0 ≤ d ≤ σ(X)− 1. Using equation (1.1), one can easily obtain that

HR/(IX+IY)(d) = HX(d) + HY(d)−HX∪Y(d) = HX(d)

for such d. Applying Proposition 2.9, the Artinian point star configu-
ration quotient R/(IX + IY) has the WLP.

(b) Let X be a point star configuration in Pn of type s defined by forms
of degrees d1, . . . , ds. Notice that if either more than or equal to two
forms have degree ≥ 2 or one of the forms has degree ≥ 3, then by
Theorem 2.6 X does not have generic Hilbert function. So the assump-
tion for a point star configuration in Pn in (a) is necessary to obtain a
point star configuration having generic Hilbert function.

(c) Let X and Y be finite sets of points in Pn and let αY be the initial degree
of the ideal IY. If X has generic Hilbert function and σ(X) ≤ αY, then,
by Proposition 2.9, the Artinian quotient R/(IX + IY) has the WLP.
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(1) In general, let X1, . . . ,Xr be finite sets of points in Pn with r ≥ 2
and αXi

be the initial degree of the ideal IXi
for 2 ≤ i ≤ r. If

σ(X1) ≤ αXi for 2 ≤ i ≤ r, then by Proposition 2.9, the Artinian
quotient R/(IX1 + · · ·+ IXr ) has the WLP.

(2) Moreover, if Xi is a finite set of points in Pn having generic Hilbert
function for 1 ≤ i ≤ r with r ≥ 2 and σ(X1) < σ(Xj) for 2 ≤ j ≤ r,
then by Proposition 2.9, the Artinian quotient R/(IX1

+ · · ·+ IXr
)

has the WLP as well.

Remark 2.12. Suppose X1, . . . ,X` are linear point star configurations in Pn of
any types with ` ≥ 2. Using induction on ` ≥ 2, Corollary 2.7, and Proposi-
tion 2.9, one can easily show that the Artinian point quotient

R/(IX1
+ · · ·+ IX`

)

has the WLP. But it is still unknown if the Artinian ring R/(IX1
+ · · · + IX`

)
has the SLP.

3. The union of two star configurations in P2 having generic
Hilbert function

In this section, we introduce the union of two star configurations in P2

having generic Hilbert function, and then we shall show that certain Artinian
star configuration quotients have the SLP in the next section.

Remark 3.1. (a) Let X be a general star configuration in Pn of type (r, s)
defined by forms of degrees d1, . . . , ds and let Y be a special star con-
figuration in Pn of type (r, s) defined by forms G1, . . . , Gs, where Gi’s
are products of di-linear forms in R = k[x1, . . . , xn]. If any r-forms
Gi1 , . . . , Gir among s-forms G1, . . . , Gs are a regular sequence, then by
the same argument as in the proof of [26, Theorem 3.4], R/IY has the
same graded minimal free resolution as R/IX.

(b) Let X and Y be general star configurations in Pn of type (r, s) and (r, t)
defined by s-forms and t-forms, respectively. As long as the defining
forms (not necessary general forms) for X and Y have two conditions,
i.e., (i) any r-forms among s-forms (t-forms, respectively) is a regular
sequence, (ii) X and Y do not share their defining forms, and (iii) X
and Y are disjoint, we see that X, Y, and X ∪ Y don’t change the
degrees of minimal generators and the minimal graded free resolutions
of the ideals. This is the way how to define star configurations X and
Y throughout this paper.

Example 3.2. (a) Let X = {℘1, ℘2, . . . , ℘5} be a finite set of 5 points in
P2 and Y be a linear point star configuration in P2 of type 5 defined
by linear forms M1, . . . ,M5 in R. If Mi vanishes on a point ℘i for
i = 1, . . . , 5, then X ∪ Y is a k-configuration in P2 of type (1, 2, . . . , 5).
By Lemma 2.2, X ∪ Y has generic Hilbert function.
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(b) Let X be a point star configuration in P2 of type 3 defined by forms
L1,1L1,2, L2, L3, and Y be a linear point star configuration in P2 of
type 5 defined by forms M1, . . . ,M5 in R, where Li,j , Lk,M` are all
linear forms in R = k[x0, x1, x2]. Let X = {℘1, ℘2, . . . , ℘5}. Without
loss of generality, we may assume that Mi vanishes on a point ℘i for
i = 1, . . . , 5. Indeed, this is always possible because we can always
make 3-forms L1,1L1,2, L2, L3 and any 3-forms among 5-linear forms
M1, . . . ,M5 regular sequences. Then X∪Y is a k-configuration in P2 of
type (1, 2, . . . , 5). By Lemma 2.2, X ∪ Y has generic Hilbert function.

Example 3.2 motivates the following proposition and corollary.

Proposition 3.3. Let X be a finite set of points in P2 and Y be a linear
point star configuration in P2 of type t defined by linear forms M1, . . . ,Mt with
t ≥ deg(X) ≥ 3.

(a) If each linear form Mi vanishes on a distinct point in X for every
1 ≤ i ≤ deg(X), then X ∪ Y has generic Hilbert function.

(b) If X is a point star configuration in P2 of type s with s ≥ 3, then X∪Y
has also generic Hilbert function.

Proof. (a) Let X = {℘1, . . . , ℘deg(X)}. By assumption, we suppose that

M1 vanishes on a point ℘1 in X and (t− 1)-points in Y,
M2 vanishes on a point ℘2 in X and (t− 2)-points in Y,

...
Mdeg(X) vanishes on on a point ℘deg(X) in X and (t−deg(X))-points in Y,

Mdeg(X)+1 vanishes on (t− deg(X)− 1) points,
...

Mt−2 vanishes on 2 points,
Mt−1 vanishes on 1 point.

Hence X ∪ Y is a k-configuration in P2 of type

(1, 2, . . . , t− deg(X)− 1, t− deg(X) + 1, . . . , t).

(b) By an analogous argument as in Example 3.2(b), we may assume that a
linear form Mi vanishes on a point ℘i in X and (t− i)-points in Y for 1 ≤ i ≤
deg(X). Then X ∪ Y is a k-configuration in P2 of the same type as in (a).

Therefore, by Lemma 2.2, X ∪ Y has generic Hilbert function, which com-
pletes the proof. �

Corollary 3.4. Let X be a finite set of points in P2 and Y be a linear point
star configuration in P2 of type t defined by linear forms M1, . . . ,Mt with t ≥
deg(X)− 1 ≥ 2.

(a) If M1 vanishes on two distinct points in X and each linear form Mi

vanishes on a distinct point in X for every 2 ≤ i ≤ deg(X) − 1, then
X ∪ Y has generic Hilbert function.
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(b) In particular, if X is a point star configuration in P2 of type s with
s ≥ 3, then X ∪ Y has also generic Hilbert function.

Proof. If t ≥ deg(X), then by Proposition 3.3 it holds. Now we assume that
t = deg(X)− 1 and let X = {℘1, . . . , ℘deg(X)}.

(a) Without loss of generality, we assume that
(1) M1 vanishes on (t + 1) points, i.e., two points ℘1, ℘2 in X and

(t− 1)-point in Y,
(2) M2 vanishes on (t− 1) points, i.e., one point ℘3 in X and (t− 2)-

points in Y,
...

(3) Mdeg(X)−2 vanishes on 2 points, i.e., one point ℘deg(X)−1 in X and
1-point in Y,

(4) Mdeg(X)−1 vanishes on 1 point, i.e., one point ℘deg(X) in X.

Then X ∪Y is a k-configuration in P2 of type (1, 2, . . . , t− 1, t+ 1).
(b) By the same method as above, one can see that X∪Y is a k-configuration

in P2 of type (1, 2, . . . , t− 1, t+ 1).

Therefore, by Lemma 2.2, X ∪ Y has generic Hilbert function, which com-
pletes the proof. �

Before we prove the main theorem (Theorem 3.10), we introduce the follow-
ing example to show the idea used in the proof of the theorem.

Example 3.5. Let X be a point star configuration in P2 of type 3 defined by
one quadratic form L1,1L1,2, and two linear forms L2, L3 and Y be a point star
configuration in P2 of type 5 defined by one quadratic form M1,1M1,2, and four
linear forms M2, . . . ,M5 (see Figure 1). Notice that deg(X) = 5.

As in Figure 1, we assume that

M1,1 vanishes on 2 points ℘1, ℘2 in X and 4 points in Y, and
so M1,1 vanishes on 6 points in X ∪ Y,
M1,2 vanishes on 1 points ℘3 in X and 4 points in Y, and
so M1,2 vanishes on 5 points in X ∪ Y,
M2 vanishes on 1 points ℘4 in X and 3 points in Y, and
so M2 vanishes on 4 points in X ∪ Y,
M3 vanishes on 1 point ℘5 in X and 2 points in Y, and
so M3 vanishes on 3 points in X ∪ Y, and
M4 vanishes on 1 point in Y, and so M4 vanishes on 1 point in X ∪ Y.

Then X ∪ Y is a k-configuration in P2 of type (1, 3, 4, 5, 6). By Lemma 2.2,
X ∪ Y has generic Hilbert function.

Remark 3.6. Let X be a point star configuration in P2 of type s defined by
a-quadratic forms and (s−a)-linear forms and let Y be a k-configuration in P2

of type

T = (1, 2, . . . , a− 1, a+ 1, . . . , s+ a− 2, s+ a− 1).
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L2

M1,1

M1,2

M2

M3M4

M5

L1,1
L1,2

L3
℘1

℘2

℘4

℘3

℘5

Figure 1. The union of two point star configurations in P2

of types 3 and 5

Then, by Proposition 2.3 and Lemma 2.2, X and Y have the same Hilbert
function as

HX = HY : 1

(
1 + 2

2

)
· · ·

(
2 + (d− 3)

2

)
deg(X) →,

where d = s+ a. Here

deg(X) = deg(Y) =
(s+ a)2 − s− 3a

2
.

The following theorem is useful to prove the main theorem in this section.

Theorem 3.7 ([15, Corollary 2.8]). Let X be a variety of Pn and let H be a
hyperplane of Pn not containing any irreducible component of X. Let V be a
subvariety of H such that

HV(i) =

(
i+ (n− 1)

n− 1

)
for i ≤ s.

If HX(s − 1) = HX(s) (that is if k is algebraically closed then X consists of
HX(s− 1) points), then

HX∪V(i) = HV(i) + HX(i− 1) for every i ≥ 0.

We now introduce some other types of star configurations in P2 whose
union has generic Hilbert function. For the rest of this paper, we assume
that Li,j , Lj ,Mi,j ,Mj are all linear forms in R = k[x0, x1, x2]. The following
two lemmas are helpful.
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Lemma 3.8. Let X =
⋃m
i=1 Xi be a k-configuration in P2 of type (d1, . . . , dm)

and let Li be a line defined by a linear form Li for 1 ≤ i ≤ m such that Xi ⊆ Li.
Let Y be a finite set of points in P2. If the linear form Li does not vanish on
any point in Y for every 1 ≤ i ≤ m and σ(Y) < d1, then the Hilbert function
of X ∪ Y is

HX∪Y(i) = HX(i) + HY(i−m)

for i ≥ 0.

Proof. We use induction on m. Let m = 1. The Hilbert function of a set of
d1-collinear points is 1 2 · · · d1 → . Since σ(Y) < d1, we see that

HY(d1 − 1) = HY(d1),

and thus, by Theorem 3.7,

HX∪Y(i) = HX(i) + HY(i− 1) for every i ≥ 0.

Let m > 1. Notice that

σ(X1 ∪ Y) = d1.

Define

Z := X1 ∪ · · · ∪ Xm−1.
By the inductive assumption, we have that

HZ∪Y(i) = HZ(i) + HY(i− (m− 1)) for every i ≥ 0, and

σ(Z ∪ Y) = dm−1.

Moreover, since σ(Z ∪ Y) = dm−1 < dm, we see that, by Theorem 3.7, the
Hilbert function of X ∪ Y is

HX∪Y(i) = HXm∪(Z∪Y)(i)

= HXm(i) + HZ∪Y(i− 1)

= HXm
(i) + (HZ(i− 1) + HY((i− 1)− (m− 1)))

= HX(i) + HY(i−m)

for every i ≥ 0. This completes the proof. �

Lemma 3.9. Assume X is a point star configuration in P2 of type s defined
by a-quadratic forms and (s − a)-linear forms L1,1L1,2, L2,1L2,2, . . . , La,1La,2,
La+1, . . . , Ls with 0 ≤ a ≤ s, and Y is a point star configuration in P2 of type
t defined by b-quadratic forms and (t − b)-linear forms M1,1M1,2,M2,1M2,2,
M3,1M3,2, . . . ,Mb,1Mb,2,Mb+1, . . . ,Mt−1,Mt with 0 ≤ b ≤ t. If u := deg(X) ≤
b ≤ t, then X ∪ Y has generic Hilbert function.

Proof. Let u = b. We may assume that

• Mi,1 vanishes on (t+b−2i)-points in Y and 1-point in X for 1 ≤ i ≤ u,
and

• Mi,2 vanishes on (t+ b− 2i)-points in Y for 1 ≤ i ≤ u (see Table 1).
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Table 1. A k-configuration in P2 of type (1, 2, 3, . . . , t + b −
2, t+ b− 1, t+ b)

X Y X ∪ Y
M1,1 1 t+ b− 2 t+ b

M1,2 0 t+ b− 2 t+ b− 1

M2,1 1 t+ b− 4 t+ b− 2

M2,2 0 t+ b− 4 t+ b− 3
...

...
...

...

Mb,1 1 t− b t− b+ 1

Mb,2 0 t− b t− b

Mb+1 0 t− b− 1 t− b− 1
...

...
...

...

Mt−2 0 2 2

Mt−1 0 1 1

Mt 0 0 0

Hence X ∪ Y is a k-configuration in P2 of type (1, 2, 3, . . . , t+ b− 2, t+ b−
1, t+ b), and so by Lemma 2.2 X ∪ Y has generic Hilbert function.

Now suppose that 1 ≤ u < b ≤ t. We may assume that

• Mi,1 vanishes on (t+b−2i)-points in Y and 1-point in X for 1 ≤ i ≤ u,
• Mi,2 vanishes on (t+ b− 2i)-points in Y for 1 ≤ i ≤ u (see Table 2).

We now split X∪Y into two disjoint sets U and V as follows. First, U is the
set of all points on conics defined by the following u-quadratic forms

M1,1M1,2, . . . ,Mu,1Mu,2,

and

V := X ∪ Y− U,
respectively (see Tables 3 and 4).

Then U is a k-configuration in P2 of type

T1 = (t+ b− 2u, t+ b− 2u+ 1, . . . , t+ b− 2, t+ b− 1).

Furthermore, V is a point star configuration in P2 of type (t− u) defined by
(b − u)-quadratic forms and (t − b)-linear forms. Let d = 2(b − u) + (t − b) =
t+ b− 2u. By Proposition 2.3 and Remark 3.6, the Hilbert function of V is

HV :

(
1 + 2

2

)
· · ·

(
2 + (d− 3)

2

)
deg(V) →,

which is the same as the Hilbert function of a k-configuration in P2 of type

T2 = (1, 2, . . . , b− u− 1, b− u+ 1, . . . , t+ b− 2u− 1).
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Table 2. A set X ∪ Y = U ∪ V

X Y X ∪ Y

U =



M1,1 1 t+ b− 2 t+ b− 1

M1,2 0 t+ b− 2 t+ b− 2

M2,1 1 t+ b− 4 t+ b− 3

M2,2 0 t+ b− 4 t+ b− 4
...

...
...

...

Mu,1 1 t+ b− 2u t+ b− 2u+ 1

Mu,2 0 t+ b− 2u t+ b− 2u

V =



Mu+1,1 0 t+ b− 2u− 2 t+ b− 2u− 2

Mu+1,2 0 t+ b− 2u− 2 t+ b− 2u− 2
...

...
...

...

Mb,1 0 t− b t− b

Mb,2 0 t− b t− b

Mb+1 0 t− b− 1 t− b− 1

Mb+2 0 t− b− 2 t− b− 2
...

...
...

...

Mt−2 0 2 2

Mt−1 0 1 1

Mt 0 0 0

Table 3. A k-configuration U in P2 of type (t+b−2u, . . . , t+
b− 2, t+ b− 1)

X Y X ∪ Y
M1,1 1 t+ b− 2 t+ b− 1
M1,2 0 t+ b− 2 t+ b− 2
M2,1 1 t+ b− 4 t+ b− 3
M2,2 0 t+ b− 4 t+ b− 4

...
...

...
...

Mu,1 1 t+ b− 2u t+ b− 2u+ 1
Mu,2 0 t+ b− 2u t+ b− 2u

Recall that the first component of T1 is t+ b− 2u and

σ(V) = t+ b− 2u− 1 < t+ b− 2u.

By Lemma 3.8, the Hilbert function of X ∪ Y = U ∪ V is

HX∪Y(i) = HU∪V(i) = HU(i) + HV(i− 2u) for i ≥ 0.
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Table 4. A point star configuration V in P2 of type (t − u)
defined by (b− u)-quadratic forms and (t− b)-linear forms

X Y X ∪ Y
Mu+1,1 0 t+ b− 2u− 2 t+ b− 2u− 2
Mu+1,2 0 t+ b− 2u− 2 t+ b− 2u− 2

...
...

...
...

Mb,1 0 t− b t− b
Mb,2 0 t− b t− b
Mb+1 0 t− b− 1 t− b− 1

...
...

...
...

Mt−2 0 2 2
Mt−1 0 1 1
Mt 0 0 0

Since the Hilbert function of V is the same as the Hilbert function of of a
k-configuration in P2 of type

(1, 2, . . . , b− u− 1, b− u+ 1, . . . , t+ b− 2u− 1),

we get that the Hilbert function of X ∪ Y is the same as the Hilbert function
of a k-configuration in P2 of type

(1, 2, . . . , b− u− 1, b− u+ 1, . . . , t+ b− 2u− 1, t+ b− 2u, . . . , t+ b− 1).

Therefore, by Lemma 2.2, X∪Y has generic Hilbert function, as we wished. �

Theorem 3.10. With notation as in Lemma 3.9, if t ≥ deg(X) and s ≥ 3,
then X ∪ Y has generic Hilbert function.

Proof. If b = 0, then Y is a linear point star configuration in P2 of type t, and
so by Proposition 3.3 X∪Y has generic Hilbert function. Now consider that Y
is not a linear star configuration in P2 of type t, i.e., 1 ≤ b ≤ t.

Recall that u := deg(X). If u ≤ b ≤ t, then by Lemma 3.9 it holds. Now
suppose that b < u ≤ t.

(a) Let 3b ≤ u. We may assume that (see Table 5)
• Mi,1 vanishes on (t + b − 2i)-points in Y and 2-points in X for

1 ≤ i ≤ b, and
• Mi,2 vanishes on (t + b − 2i)-points in Y and 1-point in X for

1 ≤ i ≤ b.
• Moreover, Mb+j vanishes on one point in X for 1 ≤ j ≤ u− 3b.

Then X∪Y is a k-configuration in P2 of type (1, 2, 3, . . . , t− u+ 2b− 1,
t− u+ 2b+ 1, . . . , t+ b).
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Table 5. A k-configuration in P2 of type (1, 2, 3, . . . ,
t− u+ 2b− 1, t− u+ 2b+ 1, . . . , t+ b)

X Y X ∪ Y
M1,1 2 t+ b− 2 t+ b
M1,2 1 t+ b− 2 t+ b− 1
M2,1 2 t+ b− 4 t+ b− 2
M2,2 1 t+ b− 4 t+ b− 3

...
...

...
...

Mb,1 2 t− b t− b+ 2
Mb,2 1 t− b t− b+ 1

Mb+1 1 t− b− 1 t− b
Mb+2 1 t− b− 2 t− b− 1

...
...

...
...

Mb+(u−3b) 1 t− u+ 2b t− u+ 2b+ 1

Mb+(u−3b)+1 0 t− u+ 2b− 1 t− u+ 2b− 1
...

...
...

...
Mt−2 0 2 2
Mt−1 0 1 1
Mt 0 0 0

(b) Let b < u < 3b and u = b + 2` with 1 ≤ ` < b. We may assume that
(see Table 6)
• Mi,1 vanishes on (t + b − 2i)-points in Y and 2-points in X for

1 ≤ i ≤ `,
• Mi,2 vanishes on (t + b − 2i)-points in Y and 1-point in X for

1 ≤ i ≤ `, and
• Mi,1 vanishes on (t + b − 2i)-points in Y and 1-point in X for
`+ 1 ≤ i ≤ b.

Then X∪Y is a k-configuration in P2 of type (1, 2, 3, . . . , t+ b− 2`− 1,
t+ b− 2`+ 1, . . . , t+ b).

(c) Let b < u < 3b and u = b + 2` + 1 with 0 ≤ ` < b. We may assume
that (see Table 7)
• Mi,1 vanishes on (t + b − 2i)-points in Y and 2-points in X for

1 ≤ i ≤ `+ 1,
• Mi,2 vanishes on (t + b − 2i)-points in Y and 1-point in X for

1 ≤ i ≤ `, and
• Mi,1 vanishes on (t + b − 2i)-points in Y and 1-point in X for
`+ 2 ≤ i ≤ b.
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Table 6. A k-configuration in P2 of type (1, 2, 3, . . . ,
t+ b− 2`− 1, t+ b− 2`+ 1, . . . , t+ b)

X Y X ∪ Y
M1,1 2 t+ b− 2 t+ b
M1,2 1 t+ b− 2 t+ b− 1
M2,1 2 t+ b− 4 t+ b− 2
M2,2 1 t+ b− 4 t+ b− 3

...
...

...
...

M`,1 2 t+ b− 2` t+ b− 2`+ 2
M`,2 1 t+ b− 2` t+ b− 2`+ 1

M`+1,1 1 t+ b− 2`− 2 t+ b− 2`− 1
M`+1,2 0 t+ b− 2`− 2 t+ b− 2`− 2

...
...

...
...

Mb,1 1 t− b t− b+ 1
Mb,2 0 t− b t− b
Mb+1 0 t− b− 1 t− b− 1
Mb+2 0 t− b− 2 t− b− 2

...
...

...
...

Mt−2 0 2 2
Mt−1 0 1 1
Mt 0 0 0

Then X∪Y is a k-configuration in P2 of type (1, 2, 3, . . . , t+ b− 2`− 2,
t+ b− 2`, . . . , t+ b).

Therefore, by Lemma 2.2, X∪Y has generic Hilbert function. This completes
the proof. �

Remark 3.11. In Theorem 3.10, it is not necessary that X is a point star con-
figuration in P2 defined by quadratic and linear forms. Indeed, it is enough if
X satisfies the condition in the proof of Theorem 3.10.

4. The Artinian quotient having the strong Lefschetz property

There is a useful numerical characterization of Lefschetz elements, for which
we need some notations.
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Table 7. A k-configuration in P2 of type (1, 2, 3, . . . ,
t+ b− 2`− 2, t+ b− 2`, . . . , t+ b)

X Y X ∪ Y
M1,1 2 t+ b− 2 t+ b
M1,2 1 t+ b− 2 t+ b− 1
M2,1 2 t+ b− 4 t+ b− 2
M2,2 1 t+ b− 4 t+ b− 3

...
...

...
...

M`,1 2 t+ b− 2` t+ b− 2`+ 2
M`,2 1 t+ b− 2` t+ b− 2`+ 1

M`+1,1 2 t+ b− 2`− 2 t+ b− 2`
M`+1,2 0 t+ b− 2`− 2 t+ b− 2`− 2

M`+2,1 1 t+ b− 2`− 4 t+ b− 2`− 3
M`+2,2 0 t+ b− 2`− 4 t+ b− 2`− 4

...
...

...
...

Mb,1 1 t− b t− b+ 1
Mb,2 0 t− b t− b
Mb+1 0 t− b− 1 t− b− 1
Mb+2 0 t− b− 2 t− b− 2

...
...

...
...

Mt−2 0 2 2
Mt−1 0 1 1
Mt 0 0 0

Definition 4.1. Let
∑
i≥0 ait

i be a formal power series, where ai ∈ Z. Then
we define an associated power series with non-negative coefficients by∣∣∣∑

i≥0

ait
i
∣∣∣+ =

∑
i≥0

bit
i,

where

bi =

{
ai, if aj > 0 for all j ≤ i,
0, otherwise.

Lemma 4.2. Let A be a standard artinian graded algebra, and let L ∈ A be a
linear form. Then the following conditions are equivalent:

(a) L is a Lefschetz element of A.
(b) The Hilbert function of A/LA is given by

dimk[A/LA]i = max{0, dimk[A]i − dimk[A]i−1} for all integers i.
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(c) The Hilbert series of A/LA is

HS(A/LA) = |(1− t) ·HS(A)|+ .

Lemma 4.3 ([23, Proposition 2.7]). Let X be a finite set of points in Pn and
let A be an Artinian quotient of the coordinate ring of X. Assume that HA(i) =
HX(i) for every 0 ≤ i ≤ s− 2 with As = 0, and the Hilbert function of A is of
the form

HA : h0 h1 · · · hσ−1 hσ · · ·
(s−2)-nd
hσ hs−1 0

where hσ−2 < hσ−1 = hσ, and hs−1 = 0 or 1. Then the Artinian ring A has
the SLP.

Theorem 4.4. Let X and Y be finite sets of points in Pn having generic Hilbert
function.

(a) If σ(X) 6= σ(Y), then the Artinian point quotient A := R/(IX + IY) has
the WLP.

(b) If X ∪ Y has generic Hilbert function such that σ(X) ≤ σ(Y) and

deg(X) + deg(Y) =

(
n+ (σ(Y)− 1)

n

)
or

(
n+ (σ(Y)− 1)

n

)
+ 1,

then the Artinian point quotient A has the SLP.

Proof. (a) By Remark 2.11(c), it holds.
(b) Define

σ1 := σ(X), and
σ2 := σ(Y).

(i) First we assume that

deg(X) + deg(Y) =

(
n+ σ2 − 1

n

)
.

Since X, Y, and X ∪ Y all have generic Hilbert function, we obtain
that the Hilbert functions of X, Y, and X ∪ Y are

HX : · · · deg(X)
σ1-st

deg(X) · · · deg(X)
(σ2−1)-st
deg(X) deg(X) →,

HY : · · ·
(
n+ (σ1 − 1)

n

) (
n+ σ1
n

)
· · ·

(
n+ (σ2 − 2)

n

)
deg(Y) deg(Y) →,

HX∪Y : · · ·
(
n+ (σ1 − 1)

n

) (
n+ σ1
n

)
· · ·

(
n+ (σ2 − 2)

n

) (
n+ (σ2 − 1)

n

)
deg(X) + deg(Y) →,

respectively. Using the exact sequence

0→ R/(IX ∩ IY)→ R/IX ⊕R/IY → R/(IX + IY)→ 0,

the Hilbert function of A is

HA : 1

(
n+ 1

1

)
· · ·

(
n+ (σ1 − 2)

n

)
deg(X) deg(X) · · ·

(σ2−2)-nd
deg(X) 0.
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(ii) Now assume that

deg(X) + deg(Y) =

(
n+ (σ2 − 1)

n

)
+ 1.

By an analogous argument as above, we obtain the Hilbert function of
A is

HA : 1

(
n+ 1

1

)
· · ·

(
n+ (σ1 − 2)

n

)
deg(X) deg(X) · · ·

(σ2−2)-nd
deg(X) 1 0.

Therefore, by Lemma 4.3, the Artinian point quotient A has the SLP, which
completes the proof. �

If we couple Theorem 4.4 with Theorem 3.10, we obtain the following corol-
lary.

Corollary 4.5. Assume X is a point star configuration in P2 of type s defined
by a-quadratic forms and (s− a)-linear forms L1,1L1,2, L2,1L2,2, . . . , La,1La,2,
La+1, . . . , Ls with s ≥ 3 and 0 ≤ a ≤ s, and Y is a point star configuration
in P2 of type t defined by b-quadratic forms and (t− b)-linear forms M1,1M1,2,
M2,1M2,2, M3,1M3,2, . . . ,Mb,1Mb,2, Mb+1, . . . ,Mt−2, Mt−1, Mt with 0 ≤ b ≤ t
such that X ∩ Y = ∅.

(a) If σ(X) 6= σ(Y), then the Artinian point star configuration quotient
A := R/(IX + IY) has the WLP.

(b) If deg(X) ≤ t and either b = deg(X) or deg(X) − 1, then the Artinian
point star configuration quotient A has the SLP.

Proof. (a) By Theorem 2.10, it holds.
(b) Recall that, by [29, Proposition 2.6] and Theorem 3.10, X, Y, and X∪Y

all have generic Hilbert function.
Let b = deg(X). By Proposition 2.8,

σ1 := σ(X) = s+ a− 1, and
σ2 := σ(Y) = t+ b− 1.

Moreover, by Remark 3.6

deg(X) =
(s+ a)2 − s− 3a

2
, and

deg(Y) =
(t+ b)2 − t− 3b

2
.

Thus

deg(X) + deg(Y) = b+
(t+ b)2 − t− 3b

2

=
(t+ b)2 − (t+ b)

2

=

(
t+ b

2

)
=

(
σ2 + 1

2

)
.
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Hence by Theorem 4.4(b), the Artinian point star configuration quotient A has
the SLP.

Now assume that b = deg(X)− 1. Recall that, by Theorem 3.10, X ∪ Y has
generic Hilbert function. By an analogous argument as above,

deg(X) + deg(Y) =

(
σ2 + 1

2

)
+ 1.

Thus by Theorem 4.4(b), the Artinian point star configuration quotient A has
the SLP as well. This completes the proof. �

5. The Jordan type for a special Artinian point quotient

In this section, we shall prove that the Artinian quotient of a coordinate ring
of a general (n+ 1)-points in Pn has the SLP using the Jordan type argument.
We first recall the results in [19] about the WLP and the SLP based on Jordan
type.

Lemma 5.1 ([19]). Assume A is graded and HA is unimodal. Then

(a) A has the WLP if and only if the number of parts of the Jordan type
JA,` = max{HA(i)}. (The Sperner number of A);

(b) ` is a strong Lefschetz element of A if and only if JA,` = H∨A the
conjugate of HA (exchange rows and columns in the Ferrers diagram
of HA).

Lemma 5.2. Let X be a finite set of (n + 1)-points in Pn and let A be an
Artinian quotient of the coordinate ring R/IX. Assume that the Hilbert function
of A is

HA : 1 n+ 1 · · · n+ 1 hs,

where s ≥ 2 and 0 ≤ hs ≤ n+ 1. Then A has the SLP.

Proof. We shall prove this by induction on hs. Recall, that by Lemma 4.3, if
hs = 0, 1, then A has the SLP. So we now suppose that 1 < hs ≤ n+ 1 and B
is an Artinian quotient of A having Hilbert function

HB : 1 n+ 1 · · · n+ 1 hs − 1.

By induction on hs, B has the SLP, and thus, for a general linear form `, the
Jordan type JB,` for B is

JB,` = H∨B = (p1, p2, . . . , pn, pn+1),

where

pi =


s+ 1, i = 1,

s, i = 2, . . . , hs − 1,

s− 1, i = hs, . . . , n+ 1.

By Proposition 2.9, A has the WLP. Hence, by Lemma 5.1(a), the Jordan type
JA,` for A is of the form

JA,` = (p′1, . . . , p
′
n+1).
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Notice that since B is an Artinian quotient of A, we get that

p′i = pi for 1 ≤ i ≤ hs − 1.

Moreover, since

dimkA =

n+1∑
i=1

p′i =

[ n+1∑
i=1

pi

]
+ 1,

we have
n+1∑
i=hs

p′i =

[ n+1∑
i=hs

pi

]
+ 1.

Recall that Ad and Bd agree in degrees ≤ s−1 and pi = s−1 for hs ≤ i ≤ n+1.
Thus

p′i = pi + 1 = s

for some hs ≤ i ≤ n+ 1, say, i = hs. In other words,

JA,` = H∨A.

Therefore, by Lemma 5.1(b), A has the SLP, as we wished. �

The following proposition is immediate from double induction on t and ht
with Lemma 5.2. So we omit the proof.

Proposition 5.3. Let X be a set of (n+ 1)-general points in Pn, and let A be
an Artinian quotient of the coordinate ring of X having Hilbert function of the
form

HA : 1 n+ 1 · · · n+ 1 hs · · · ht,

where t ≥ s ≥ 2. Then A has the SLP.

Acknowledgement. The authors are grateful to the reviewer for their metic-
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