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A LOCAL-GLOBAL PRINCIPLE FOR
REPRESENTATIONS OF BINARY
FORMS BY CERTAIN QUINARY FORMS

MyunG-HwaN KiM AND BYEONG-KWEON OH

ABSTRACT. In this article, we prove a certain local-global principle
for representation of binary forms by an infinite family of quinary
positive integral quadratic forms.

1. Introduction

One of the most fundamental questions in representation theory of
integral quadratic forms is about the local-global principle, which is as
follows:

Let M and N be positive integral quadratic forms of rank m and
n, respectively, such that M represents N locally at every prime spot.
Under what condition does M represent N globally?

Concerning this question, we let R,,(n) be the set of all positive
integral quadratic forms M of rank m satisfying the following property:

(R) M represents all positive integral quadratic forms N of rank n pro-
vided that N — M over Z, at all p and min(N) > C(M) for some
positive constant C(M) depending only on M and n.

We define R(n) to be the minimum rank m for which R,,(n) equals
the set of all positive integral quadratic forms of rank m. In 1929 Tar-
takowsky [22] proved

R(1)=5
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and in 1978, J. S. Hsia, Y. Kitaoka and M. Kneser [5] made a break-
through by proving that

R(n) < 2n+3.

On the other hand, Y. Kitaoka [9] gave examples of positive integral qua-
dratic forms of rank n+ 3 that are not contained in R, 3(n). Therefore,

we have
n+4 < R(n) <2n+3.

Recently, M. J6chner (8] proved
R(2) =6.

See [8] for other interesting results in this direction.

As appeared in Kitaoka’s examples, the primitiveness condition on
local representations seems to play an important role in studying the
local-global principle for representations of integral quadratic forms.
Regarding this, we define R}, (n) to be the set of all positive integral
quadratic forms M of rank m satisfying the following property:

(R*) M represents all positive integral quadratic forms N of rank n
provided that N — M primitively over Z, at all p and min(N) > C*(M)
for some positive constant C*(M) depending only on M and n.

We define R*(n) to be the minimum rank m for which R}, (n) equals
the set of all positive integral quadratic forms of rank m. It is clear that

Rn(n) TRy, (n) and R*(n) < R(n).
In [10, 11|, Kitaoka proved that
Ri,po(n) = Ronyo(n) for n > 2

and
R3,11(n) = Rapgi(n) for n > 3.

It is well known that
R*(1)=4

(see [1] and [4]) and from the recent result of [8] follows that

5 < R*(2) <6.
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In this paper, we find an infinite family of quinary positive integral
quadratic forms that is contained in :%(2). More precisely, we prove
that every quinary positive even (or odd) integral quadratic form with
even (or odd, respectively) squarefree discriminant that contains a qua-
ternary sublattice of class number 1 as an orthogonal direct summand is
contained in R3(2). Furthermore, an explicit estimation of the constant
C*(M) is provided. See [3] and [23] for their estimation of C(M) when
n =1, and [2, 12 — 18] for recent results of authors on representations
of integral quadratic forms related to the local-global principle.

We shall adopt lattice theoretic language. A Z-lattice L is a finitely
generated free Z-module in R™ equipped with a non-degenerate symmet-
ric bilinear form B such that B(L, L) C Z. The corresponding quadratic
map is denoted by Q.

For a Z-lattice L with basis vectors ey, es, -+, e,, i.e., L = Zey +
Zes + - - - + Ze,, we often write

L = (B(e:, €)))-

For sublattices Ly,Le of L, L = L, 1 Ly means L = L; & Ly and
B(vy,vy) =0 for all vi € Ly,vy € Lo. We call L diagonal if it admits
an orthogonal basis and in this case, we simply write

L= <Q(e1), Q(ez), ce aQ(en»’

where {e1, €2, -+, e,} is an orthogonal basis of L. We call L non-
diagonal otherwise. L is called positive definite or simply positive if
Q(e) > 0 for any e € L,e # 0. As usual,

dL = det(B(e;i, e;))

is called the discriminant of L. A Z-lattice (or Zs-lattice) L is called
even when Q(L) C 2Z (or C 2Z,, respectively) and odd otherwise. Note
that every even lattice with odd rank has even discriminant.

We define RL := R ®z L for any commutative ring R containing Z.
For a Z-lattice L and a prime p, we define

L, :=1Z,L

and call it the localization of L at p. If {ej, ez, - - -, €, } is an orthogonal
basis of the quadratic space V = QL or Q,L, we write in short

V =(Q(e1),Q(e2), -~ , Q(en))-
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Let £ and L be Z-lattices (or Z,-lattices). We say L represents { and
write
{— L

if there is an injective Z-linear (or Z,-linear, respectively) map o from ¢
into L that preserves the bilinear forms. Such a map is called a represen-
tation. A representation o : £ — L is called a primitive representation if
o(?) is a direct summand of L. We say that L primitively represents ¢
and write

"L

if there exists a primitive representation from ¢ to L.

We define
a b
[a,b,c] == (b c>

for convenience. For unexplained terminology, notation, and basic facts
about global or local lattices, we refer the readers to O’Meara [19)].

2. Primitive representations over Z,

Let L be a Z-lattice and a(,) & Z, be an ideal. By abuse of terminol-
ogy, we say that L is a(,-maximal if L, is an a(,)-maximal Z,-lattice.
Note that for an ideal a & Z, L is a-maximal if and only if L is a,-
maximal for all prime p (see [19]).

Let £ be a binary Zs-maximal Z-lattice. Then ¢5 is isometric to one
of the following 16 binary Z.-lattices:

(L), (3,8), (2), (8,27), [2,1,2], [0,1,0],

wherea=1,3,5,7, 3=3, 7, and v = 5, 7. The next two lemmas are
useful in the proof of our main theorem in Section 3.

LEMMA 2.1. For an odd prime p, let L, = Lgp) L (pn) be a quinary
Zy-lattice with dL) € pZy and let £y = (6,p*,62p"2) be a (binary)
Zy-lattice with 6; € Z,, u; < uz. Then £y cannot be primitively
represented by L) if and only if L’(p) has a nonsquare discriminant, u,

is an odd integer less than us, and 617 & Z;z.
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Proof. 'The necessity is straightforward. For the sufficiency, suppose
that £(,) is primitively represented by L. Since (dop“?) is primitively
represented by L(;), it is also primitively represented by the orthogonal
complement K, of (§;p**) in L(,). From Hasse symbol computation
it follows that Q,K(;) is anisotropic and that the p-order of the scale
of each modular component of the Jordan decomposition of K,y is less
than us, which is impossible.

Let K(3) be a quinary (odd) unimodular Zs-lattice or even Zy-lattice
whose Jordan decomposition has even unimodular component of rank
4 and 2Zjy-modular component of rank 1. When K|y is even, one can
easily check that K(y) primitively represents all binary Z-lattices. For
the odd case, we have the following:

LEMMA 2.2. Let K(2) be a quinary unimodular Z-lattice. Then K )
primitively represents all binary Zo-lattices unless

K =~ (1,1,1,1,dK ).

In the exceptional case, K o) primitively represents all binary Z»-lattices
but
[40,28,4y] and (dK(2)) L (89),

where a, (3, 7, § € Zs.

Proof. This is a direct consequence of Hensel’s Lemma. See also [6,
7]. a

3. Quaternary sublattices of class number 1

In this section, we assume that every Z-lattice is positive unless stated
otherwise.

For a binary Z-lattice ¢, if £ = [a,b,c], 0 < 2b < a < ¢, for some basis
{e1, ez}, which always exists, we say that [a,b, c] is Minkowski reduced
and that {e;, ez} is a Minkowski reduced basis.

For an odd prime p, we denote a nonsquare unit in Z, by A,. For
two elements o, 3 € Z,, we write o ~ 8 if a3~ € Z3°.
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Let L be a quaternary Z-lattice with class number 1. We partition
all odd primes into the following three sets:

W = {p| L, is not unimodular },

U ={p| L, is unimodular with d(L,) =1},
V. ={p| L, is unimodular with d(L,) = A, }.

For a positive integer k, we define
L(6k) := L L (6k),

where 6 =1 if L is odd, and § = 2 if L is even. Let Vj be the set of all
odd prime divisors of k. We define V; :=V NV and V5 :=V \ V1.

LEMMA 3.1. Let p > 3 be a prime and a,b,c € F,. Ifb*> —ac # 0
(mod p), then the set { az® +2bz +c | z € F, } contains both a nonzero
square and a nonsquare.

Proof. See [21]. O

THEOREM 3.2. Assume that d := dL(2k) is a squarefree integer. Let
£ be a binary Z-lattice such that

£, —" L(2k),

at all p. Then for any € > 0, there exists a constant C > 0 depending
only on € such that

if min(£) > C - d°*¢, then £ — L(2k).
Proof. Let £ = [a,b,c] be Minkowski reduced. We define
5(t) == [a — 2kt?, sa + b, s%a + 2sb + ] = (

a — 2kt? sa+b
sa+b sa+2sb+c)’

where s,t are integers. We assume for the time being that a is large
enough so that £;(t) is positive, and determine how large a should be at
the end of the proof. Since the class number of L is 1, if £,(t), — L, for
all p (including co), then ¢,(t) — L and hence £ = £,(0) — L(2k). We
will find such s and ¢ in the following.
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Note that for an odd prime p,
Qp(¢s(t)) — QpL if and only if £5(t), — L,
(see [Theorem 2, 20]).
(a) p € U: In this case, £5(t), — L, for any integers s and ¢.

(b) p e WU V; U{2}: By the Chinese Remainder Theorem, it suffices
to find integers s and t at each p € WUV; U{2} such that £,(t), — L,.

b-1) p € W: Let
L,=(1,1,6,pn) and &, = [ap", Bp®,vp"],

where «, 3,7,6,7 € Z;, and u,v,w are nonnegative integers. Note that
if ord,(dfp) is even or d(Qpf) = —6npAp, then £, — L.

If d¢ # 0 (mod p), then any s,t satisfying ¢ = 0 (mod p) can be
taken so that £,(t), is unimodular, which implies £,(t), — L,. Let
d¢ =0 (mod p). Then take s,t satisfying s =0 (mod p),t #Z 0 (mod p)
ifu=v=w=0,dl =0 (mod p); take s,t satisfying st # 0 (mod p) if
u = 0,v,w # 0; and take s, t satisfying st Z 0 (mod p) if u,v # 0,w = 0,
so that £4(t), is unimodular, which again implies £,(t), — L.

It only remains to treat the case when u,v,w # 0. If 2k ~ 4, then
¢5(t), — L, by taking any s and t satisfying ¢ # 0 (mod p). So, we may
assume that 2k ~ 6A,,.

Let u < v, w. In this case, we take s,t satisfying s, Z 0 (mod p). If
u is even, then #5(t), — L, follows immediately. Let u be odd. Since

bp = (ap®, a(p oy — p? 7 6%),
we have a ~ n by Lemma 2.1, and hence
d(s(t)p) ~ —2kp"a ~ —p“ndl,.

This implies £5(t), — Lp.
Let v = v < w. Then

d(ls(t)p) = p*(p*ary — p"B° — 2kt (s*a + 256 + p" 7))
If p # 3, then take s,t satisfying

—2kt?(s%a + 258 + ¥ 4y) ~ —ndA,,
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which is possible by Lemma 3.1. Then ¢,(t), — L, follows immediately.
Let p = 3. If u is even, then take s, t satisfying t Z 0 (mod 3) and s?a+
2s8 # 0 (mod 3) so that ¢;(t)s — L3. Let uw be odd. If w,u,w —u are
all bigger than 1, take s,t satisfying ¢t # 0 (mod 3), ords(s) = 1. Then
ords(d(¢s(t)s)) is even, from which follows ¢,(t)3 — Ls. The remaining
possibilities can be handled in a similar manner and are omitted.

Let u = w < v. The proof of this case is almost identical to the above
except when p = 3 and u is odd. We may assume that ay =2 (mod 3)
because the set {s%2 +1 | s € F3} contains both a nonzero square and
a nonsquare in F3. Let t be any integer which is not divisible by 3.
It is tedious but not difficult to find an integer s (mod 9) for which
ords(d(£s(t)s)) is even. This implies £5(t)3 — Ls.

Let 4 = v =w. Then

d(£s(t)p) = p“(p*(ay — B°) — 2kt*(s°c + 258 + 7))

and the proof of this case is also very similar to the above except when
p =3, uis odd and oy — 3% = 0 (mod 3). Note that o ~ 1. If we
take s,t satisfying t Z 0 (mod 3), 2s8 + v = 0 (mod 3), then £4(t)s =
(—2k,3%a) — Ls.

Let v < u,w. We take s,t satisfying s ~ 267, t # 0 (mod p). Then

d(ls(t)p) = p* ("7 = p*B° — 2kt*(s’p" " + 256+ p“ 7))
~ —kBsp® ~ —5A,mp".

The rest is trivial.
Let v = w < u. We take s, satisfying —2kt?(2s03 + ) € Z}. Then

d(£,(t)p) ~ —2kt?(2583 + 7)p"

and the rest is trivial.
Finally, let w < w,v. The proof of this case is exactly same as that
of the case when v < v, w and is omitted.

b-2) p € Vq: Let
L,={1,1,1,A,) and £, = [ap*, Bp®,vp"],

where «, 3,7 € Z;, and u,v, w are nonnegative integers. Let 7 = 2k/p.
Note that if ordy(dé,) is odd or d(Q,¢) = —1, then £, — L,. We only
provide proofs for the cases when l <u=w<vandl <u=w=wv
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because all other cases can be proved in a very similar manner as in
b-1).
Let 1 <u =w < v. We may assume that u is odd because

d([s(t)p) — pu—i-l(pu—la,y o p2v—u—-1/62 _ Tt2(82a + 28pv—Uﬁ + ,Y))

If u # 1, then we may further assume that p = 3 by Lemma 3.1. If ary =
1 (mod 3), then one can easily find s,¢ for which d(¢(¢)s) = —3**!
and hence £4(t)3 — Ls. Let ay = —1 (mod 3). Then we can take s,t
satisfying

ords(s’a+2s3V"4F+9)=1 and t#0 (mod 3),

from which £45(t), — L, follows immediately. Let u = 1. If ay = -1
(mod p), take any s and ¢ satisfying ¢ = 0 (mod p). Then d(¢,(t),) =
—p? and hence £;(t), — L,. Assume that ¢ £ 0 (mod p). If ay—77t? =
—1 (mod p), then s satisfying s = 0 (mod p) will do. So assume that

ay# -1 and ay—7yt*# -1 (mod p).

If o —7t2 =0 (mod p), then d(¢,(t),) = —p**! for all s satisfying s # 0
(mod p) and hence £,(t), — Ly,. Let a — 7t? # 0 (mod p). Then p # 3
and hence Lemma 3.1 can be applied to find s such that d(¢s(t),) = —p?.
From this follows £5(t), — Lp.

Let 1 < uw = v = w. The proof is almost identical to the above except

when v = 1 and ay — 4% Z 0 (mod p). In the exceptional case, we have

d(2s(t),) = p*(ay — B2 — 1t (as® + 258 + 7))
=p*((ay = B) (A — o~ '7t?) — 7t*(as + B)?a™)
= p?(—art?s® — 276t%s + (a — Tt%)y — §2).
We take ¢ satisfying ¢ Z 0 (mod p). If o — 7t = 0 (mod p), then take s

satisfying as + 8 # 0 (mod p) so that d(¢5(t),) ~ —p?a~l7 ~ —p?. Let
a—1t2 #0 (mod p). If p # 3, then because

(18t%)2 — (—art®) ((a—Tt*)y—B2) = 12 (ay—B*)(a—Tt*) Z0 (mod p)
we can apply Lemma 3.1 to conclude that d(£s(t),) ~ —p®. We may

conclude the same even if p = 3 from case by case consideration. In
either case it follows that £5(t), — L,.
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b-3) p = 2: Since L, is even unimodular Zy-lattice, Lo is isometric to
either
[0,1,0] L [0,1,0] or [0,1,0] L[2,1,2].

Since the former represents all binary even Zo-lattices, assume that Lo
is isometric to the latter. Then Lo represents all binary primitive even
Zo-lattices except [4,2,4]. So any binary even Zy-lattice that represents
a 2-adic integer 6 with ordz(0) = 1 is represented by L. Thus by taking
any s and t satisfying t # a/2 (mod 2), we obtain £4(t)s — Lo.

(c) p € Va: Let T be the product of those primes p € W U V; U {2} for
which we took t satisfying ¢t = 0 (mod p) in order for L, to represent
£5(t)p in (b).

Note that every binary Z,-lattice whose scale is Z, can be represented
by L,. It suffices to find a suitable integer S such that ged(a—2kT?, Sa+
b,p) =1 so that £5(T"), — L, for all p € V5. Let

B:=3x [] »
pEWUVl

where v = 1if 3 € WUV; and v = 0 otherwise, and take s' < B such that
£ (T)p — Ly, for all p € W U V; U {2}. Then clearly, £gpts/(T)p — Lp
for all integers h and p € W U V; U {2}.

Let A be the set of all primes dividing a — 2k7? and let

An‘/Z = {qlaQZa"'aQC}~

We may assume that e > 1. Note that ged(Ba,q192---¢.) = 1. By
Lemma 3 in [12], if we let g be the smallest integer satisfying

29 +1> (g1 +e—1)2°/(q1 — 1),
then there exists an integer S in the set
{B(_g) +8/,B(—g+1) +S/,.‘.,S,,...,B(g— 1) +S,,Bg+8/}

such that Sa + b is not divisible by g; for all 7, 1 << < e. If we take this
S, then £5(T), — L, for all p € V5.

Note that the with S and T chosen above, £5(T), — L, holds not
only at all p € V; but also at all pe WU V; U{2}UU. Furthermore, if

min(¢) = a > 3d°(g + 2)?,
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then

d(ls(T)) = ac — b* — 2kT?(S%a + 25b +¢)

> f‘f i -‘%‘%‘f — 2KT2(8% + |Slc + ¢)
> 3%0 — 2KT2(|S)| + 1)%c
>3- 8kreBrg 1 92
1773
> %(a —3d°(g +2)%) >0,

where the last line follows from 2k < d,T < d, and 2B < 3d.

Note that a > a — 2kT? > ¢1¢5---¢. and that 3(g + 2)? < 12¢%4°.
Let ey be the largest positive integer e for which 12¢24% > 5° and let
Co 1= 12e24%. We assume that 3< q1 < g <+« < ¢.

Let any small enough ¢ > 0 be given. Choose a smallest prime q
such that elogz(,/q/5) > 5. Let ¢ be the j-th smallest odd prime. Then
define _

C = Cl(e) := max { Cy,5% }.

It suffices to show that a > C(e)d®*¢ implies a > 3d°(g + 2)2.
If e < eg, then

a > C(e)d®¢ > Cod® > 12e24°d° > 3(g + 2)%d°.
So, we may assume e > eg. If e < 2j, then
a > C(e)d™ ¢ > 5¥d° ¢ > 5°d° > 3(g + 2)%dP.
So, we may further assume e > 2j. Let ¢ < ¢log; d. Then
a > C(e)d™ > Cle)d®s® > d°5° > 3d°(g + 2)°.

Let e > elogy d. Note that a > ¢°/2 by the choice of g and the assump-
tion ¢ > 25. Then

e/2 € elogs d
9 / — (ﬁ) L > (_@) ) 1 dﬁlogs(ﬁ/S) . % > 1’

5eds 5 ) @ 5 B

which implies @ > ¢*/? > 5°d® > 3d°(g + 2)? as desired.
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Therefore we can always choose a suitable positive constant C = C/(e)
depending only on € such that £5(T") is positive. This completes the
proof. d

Observe that the constant C*(M) introduced in (R*) is C(e)(dM )3T,
which depends only on M = L(2k) and the rank(f) = 2.

REMARK 3.3. The primitiveness condition on local representations
cannot be omitted in Theorem 3.2 (see [9]). For example, let

£=(140-3%™,30-7™), L =[2,1,2] 1[2,1,4].

For any integer k > 70 satisfying kK = 2 (mod 21), suppose that £ —
L(2k). Then there exist integers ¢ and r such that ¢(¢,r) — L, where

£(t,r) :=[140 - 3*™ — 2kt —2ktr, 30 - 7*™ — 2kr?]

140 - 32 — 2kt? —2ktr
—2ktr 30-72™ —2kr? |-

But one can easily check that £(¢,7)3 /4 L3 ift #0ort =r = 0 and that
(e(t,r))7 #» L7 if r # 0 for all m. Note that £, /* L(2k), at p = 3,7
although ¢, — L(2k), at all p.

We now turn to the odd version of Theorem 3.2.

THEOREM 3.4. Assume that d := dL(k) is an odd squarefree integer.
Let £ be a binary Z-lattice such that

£y =" (L(K))s

at all p. Then for any € > 0, there exists a constant C' > 0 depending
only on € such that

if min(f) > C -d®*¢, then £ — L(k).
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Proof. Let £ = [a,b, c] be Minkowski reduced. We define
L(t) == [a — kt?,sa + b, s%a + 2sb + ¢].

Since the proof is completely identical to that of Theorem 3.2 except at
p = 2, we only consider p = 2. We will find integers s and ¢ for which
£5(t)2 — L. Then the theorem follows from replacing 7" and B in the
previous theorem by

T’ = gordeW~orda(D and B =4B.

Since Ly is quaternary odd unimodular Z,-lattice, Lo represents all
Zy-maximal Zo-lattices except the following cases:

Table 3.1
Lo exceptions | L, exceptions
(L,1,1,1) (1,7, [0,1,0] |  (1,1,1,5  (1,3), [0,1,0]
(1,1,3,3) [2,1,2] | (1,1,3,7) (2,1,2]
(1,1,1,3) (3,7) ’ (1,1,1,7) (3,3)
(1,3,3,3) (1,5) | (1,7,7,7) (1,1).

Note also that if ords(d(Q9f)) is odd, then € — L.

(a) Firstly, we consider the case when L(k)2 primitively represents all
binary Zs-lattices. Since So(L) = —(dL,dL - k), we know that L %
(1,1,1,€), where S3(L) is the 2-adic Hasse symbol of L and ¢ = 1
(mod 4). If £,(t)2 is an odd lattice, then

£s(t)a — Ly if and only if Qo(4,(t)) — Q2L
by Table 3.1. Furthermore, if ¢,(t)2 represents a unit n = —k (mod 4),
then one can easily check that £,(t)o — Lo. Let £ = [a2%, 52V, 42|,
where «, 3,7 € Z5. Note that

d(ls(t)2) = 2 Wy — 220 — kt?(s22%a 4 s2°T1 6 4 2%%).
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If u > 2, we take t satisfying orda(t) = 0. Then (2%a — kt?) — £,(t)2,
which implies £5(t); — Lo. If u = 1,v > 1,w > 2, we take s,t satis-
fying s = 1 (mod 2), ords(t) = 0 so that ordy(d(£,(t)2)) = 1 and hence
¢5(t)2 — Lo. Since the remaining subcases can be treated in a very sim-
ilar manner, we only list the choices of s and ¢ for all possible subcases
in Table 3.2 after the proof.

(b) We now treat the other case. If u > 2,w > 2, then v = 0 by the
primitiveness of representation. Consider the two choices of s,t: s =0
(mod 4),0rdz(t) = 0 and s = 2 (mod 4),0rdy(t) = 0. Both make £(t)2
odd unimodular but yield different discriminants. Therefore by Table
3.1, one of the two should be represented by Ls. Let u > 3,v > 2,w = 0.
Since v # dL - k (mod 8) by the primitiveness condition, if we take
ordya(t) = 0, then £,(t)2 is odd unimodular and d(¢,(t)s) # —d(L2).
This implies that £5(t)2 — Ls. Now let u = 0,v > 2,w = 2. If we
take s = 0 (mod 4),ordz(t) = 1, then d(€s(t)2) = 4(a — k)y (mod 16).
If ak = 3 (mod 4), then ordy(d(¢5(t)2)) is odd and hence £s(t)2 — L.
Similarly, if v& = 3 (mod 4), the desired result follows by taking s = 1
(mod 2),0rds(t) = 1. So we may assume that ak = vk = 1 (mod 4).
Consider the two choices of s, :

s=1 (mod2), orda(t)=0 and s=0 (mod?2), ords(t)=1.

Both make £;(t)2 odd but yield different discriminants over Q5. There-
fore one of the two should be represented by L.

Since the remaining subcases can be treated in a very similar man-
ner, we only list the choices of s and t for all possible subcases in
Table 3.3. O

REMARK 3.5. As was mentioned in the introduction, R*(2) = 5 or
6. Although we found an infinite family of quinary positive integral
quadratic forms that is contained in fR%(2), we could not observe any
rule in order for a given quinary form to be a member of R:(2). We
could not find a single quinary positive integral quadratic form that is
not a member of R%(2), which seems to be the only way to conclude
R*(2) = 6, if this is true. If not, proving R*(2) = 5 seems to be a very
difficult problem.



u>2:

u=1v>1lw>2:
u=1l,v>1l,w=1:
u=1lv>1Lw=0:
v=lLv=0w>2:
u=lv=0w=1:
u=lLv=0w=0:
u=0v>2w>2:
u=0v>2w=1:
u=0,v>2,w=0:
u=0,v=1Lw>2:
u=0v=Lw=1:
u=0v=1Lw=0:
u=0v=0w>2:
u=0,v=0,w=1:
uw=0,v=0w=0,ordy(ay— 8% >2:
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Table 3.2

ords(t) = 0;
s=1 (mod 2),ordy(t) = 0;
s =0 (mod 2),ordy(t) = 0;

ords(t) =1;
s=1 (mod 2),0rds(t) =1,
ordy(t) =0,2;

s =0 (mod 2),0rdy(t) = 1,2;

s=1 (mod 2),0rdy(t) =0;

ordy(t) =1;

ordy(t) =2 or s =0 (mod 4),0rdy(t) = 1;

s =1 (mod 2),ordy(t) = 0;

ordy(t) =2 or s=1 (mod 2),ordy(t) = 1;
=1 (mod 2),0rdz(t) = 0,1,

s =0 (mod 2),ords(t) = 1;

ordy(t) =1 or s =0 (mod 2),ordy(t) = 0;

u=0,v=0w=0ordy(ay— 3*)=1: ords(t) = 1.

u>2,v=0,w>2:
u>2,v>1l,w=1:
u>2,v=0w=1:
u>3v>2,w=_0:
u>3,v=1Lw=0:
u>3,v=0w=0:
u=2v>2w=_0:

Table 3.3

s=0,2 (mod 4),ordz(t) = 0;

s =1 (mod 2),o0rdy(t) = 0;

ordy(t) =2 or s =0 (mod 4),ordz(t) = 0;
ords(t) = 0;

s =0,1 (mod 2),0rds(t) = 0;

s =0 (mod 2),ords(t) =1,2;

5 =0,1 (mod 2),o0rd;(t) = 0;
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s =0 (mod 4),ord(t) = 0;
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u=2v=1Lw=0:

u=2v=0w=0:

u=lLv>1lw>2:
u=lv>lLw=1:
u=1lLv>1lLw=0:
u=1lLv=0w>3:

u=lLv=0w=2:

u=1Lv=0w=1:
u=1lLv=0,w=0:
u=0,v>2,w>3:
u=0v>2,w=2:
u=0,v>2,w=1:
u=0,v>2,w=0:
u=0v=1Lw>4:

u=0v=1Lw=3:
u=0v=Lw=2:
u=0v=1Lw=1:
u=0v=1Lw=0:
u=0,v=0,w>2:

u=0v=0w=1:

Table 3.3 (continued)

ords(t) = 0;
(mod 2), ords
(

H

s =0 (mod 2),ordy(t) = 0;
s=a+6+3 (mod 4),ordy(t) =0 or
s =0 (mod 2),ordy(t) = 0;
ords(t) = 1;
ordy(t) = 2 or s =0 (mod 4),ordx(t) = 1;
s =1 (mod 2),ordy(t) = 0;
see above;
orde(t) = 1;
ordy(t) =2 or s =0 (mod 4),ordy(t) = 1;
s =1 (mod 2),0rdz(t) =1 or
= 2 (mod 4),0rdz(t) = 0;
s =0 (mod 4),0rda(t) = 0 or ordy(t) = 2;
s =1 (mod 2),ordz(t) = 0;
ords(t) = 1;
s=0,1 (mod 2),ords(t) = 1;
ords(t) =2 or s =1 (mod 2),0rdy(t) = 1;
ordy(t) = 2 or s =0 (mod 2),orda(t) = 0;

w=0,v=0w=0,ordy(ay —3?) >3: s=0 (mod 4),ords(t) = 0;
u=0,v=0w=0,ordyay—3*)=2: s=1,3 (mod 4),ordz(t) = 1;
u=0,u=0,w=0,0rdy(ay— %) =1: ordy(t) =2
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