• 제목/요약/키워드: QDs

검색결과 214건 처리시간 0.026초

Excitation Intensity- and Temperature-Dependent Photoluminescence Study of InAs/GaAs Sub-monolayer-Quantum Dot

  • Kim, Minseak;Jo, Hyun Jun;Kim, Yeongho;Lee, Seung Hyun;Lee, Sang Jun;Honsberg, Christiana B.;Kim, Jong Su
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.109-112
    • /
    • 2018
  • Optical properties of InAs/GaAs submonolayer-quantum dot (SML-QD) have been investigated using excitation intensity ($I_{ex}$)- and temperature-dependent photoluminescence (PL). At a low temperature (13 K) strong PL was observed at 1.420 eV with a very narrow full-width at half maximum, of 7.09 meV. The results of the $I_{ex}$ dependence show that the PL intensities increase with increasing $I_{ex}$. The enhancement factors (k) of PL increment as a function of $I_{ex}$ are 3.3 and 1.22 at low and high $I_{ex}$ regime, respectively. The high k value at low $I_{ex}$, implies that the activation energy of the SML-QDs is low. The calculated activation energy of the SML-QDs from temperature dependence is 30 meV.

Enhancing Performance of 1-aminopyrene Light-Emitting Diodes via Hybridization with ZnO Quantum Dots

  • Choi, Jong Hyun;Kim, Hong Hee;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • 제31권4호
    • /
    • pp.238-243
    • /
    • 2022
  • In this study, a pyrene-core single molecule with amino (-NH2) functional group material was hybridized using ZnO quantum dots (QDs). The suppressed performance of the 1-aminopyrene (1-PyNH2) single molecule as an emissive layer (EML) in light-emitting diodes (LEDs) was exploited by adopting the ZnO@1-PyNH2 core-shell structure. Unlike pristine 1-PyNH2 molecules, the ZnO@1-PyNH2 hybrid QDs formed energy proximity levels that enabled charge transfer. This result can be interpreted as an improvement in surface roughness. The uniform and homogeneous EML alleviates dark-spot degradation. Moreover, LEDs with the ITO/PEDOT:PSS/TFB/EML/TPBi/LiF/Al configuration were fabricated to evaluate the performance of two emissive materials, where pristine-1-PyNH2 molecules and ZnO@1-PyNH2 QDs were used as the EML materials to verify the improvement in electrical characteristics. The ZnO@1-PyNH2 LEDs exhibited blue luminescence at 443 nm (FWHM = 49 nm), with a turn-on voltage of 4 V, maximum luminance of 1500 cd/m2, maximum luminous efficiency of 0.66 cd/A, and power efficiency of 0.41 lm/W.

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering (실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • 제20권6호
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

Structural and Optical Properties of Self-assembled InAs/InAl(Ga)Ae Quantum Dots on InP (InP 기판에 성장한 자발형성 InAs/InAl(Ga)As 양자점의 구조 및 광학적 특성)

  • Kim Jin-Soo;Lee Jin-Hong;Hong Sung-Ui;Kwack Ho-Sang;Choi Byung-Seok;Oh Dae-Kon
    • Journal of the Korean Vacuum Society
    • /
    • 제15권2호
    • /
    • pp.194-200
    • /
    • 2006
  • Self-assembled InAs/InAl(Ga)As quantum dots (QDs) were grown on InP substrates by a molecular-beam epiaxy, and their structural and optical properties were investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and room-temperature photoluminescence (PL). AFM images indicated that the InAs quantum structures showed various shapes such as quantum dashes, asymmetric and symmetric QDs mainly caused by the initial surface conditions of InAl(Ga)As with the intrinsic phase separation. For the buried InAs QDs in an InAlGaAs matrix, the average lateral size and height of QDs were 23 and 2 nm, respectively. By changing the growth conditions for the QD samples, the emission wavelength of $1.55{\mu}m$ was obtained, which is one of the wavelength windows for fiber optic communications.

Structural and Optical Characteristics of InAs/InAlGaAs Quantum Dots Grown on InP/InGaAs/InP Distributed Feedback Grating Structure (InP/InGaAs/InP 분포귀환형 회절격자 위에 성장된 InAs/InAlGaAs 양자점의 구조적.광학적 특성)

  • Kwack, H.S.;Kim, J.S.;Lee, J.H.;Hong, S.U.;Choi, B.S.;Oh, D.K.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • 제15권3호
    • /
    • pp.294-300
    • /
    • 2006
  • We fabricated the distributed feedback (DFB) InP/InGaAs/InP grating structures on InP (100) substrates by metal-organic chemical vapor deposition, and their structural properties were investigated by atomic force microscopy and scanning electron microscopy. Self-assembled InAs/InAlGaAs quantum dots (QDs) were grown on the InP/InGaAs/InP grating structures by molecular beam epitaxy, and their optical properties were compared with InAs/InAlGaAs QDs without grating structure. The duty of the grating structures was about 30%. The PL peak position of InAs/InAlGaAs QDs grown on the grating structure was 1605 nm, which was red-shifted by 18 nm from that of the InAs/InAlGaAs QDs without grating structure. This indicates that the formation of InAs/InAlGaAs QDs was affected by the existence of the DFB grating structures.

Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots (다층 성장한 InAs/InAlGaAs 양자점의 광학적 특성)

  • Oh, Jae-Won;Kwon, Se-Ra;Ryu, Mee-Yi;Jo, Byoung-Gu;Kim, Jin-Soo
    • Journal of the Korean Vacuum Society
    • /
    • 제20권6호
    • /
    • pp.442-448
    • /
    • 2011
  • Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z.;Abbasian, K.;Shoar-Ghaffari, S.
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.203-210
    • /
    • 2013
  • So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method

  • Yu, Jae-In;Choi, Soon-Don;Chang, Ho-Gyeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.535-538
    • /
    • 2011
  • The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.

CdTe Quantum Dots as Fluorescent Probes for Josamycin Determination

  • Peng, Jinyun;Nong, Keliang;Mu, Guangshan;Huang, Fengying
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2727-2731
    • /
    • 2011
  • A new method for the determination of josamycin has been developed based on quenching of the fluorescence of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by josamycin in ethanol. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with josamycin were investigated. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of josamycin between 12.0 and 120.0 ${\mu}g\;mL^{-1}$ with a correlation coefficient of 0.9956 and a detection limit of 2.5 ${\mu}g\;mL^{-1}$. The proposed method was successfully applied to commercial tablets, and the results were satisfactory, i.e. consistent with those of high-performance liquid chromatography (HPLC).

Aqueous synthesis of quantum dots using functionalized ionic liquid (이온성 액체를 이용한 수계 양자 점 합성)

  • Choi, Suk-Young;Kim, Tae-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.254-254
    • /
    • 2010
  • We report aqueous synthesis of cadmium telluride (CdTe) quantum dots(QDs) using imidazolium-based ionic liquids with various functional groups. The functinalized ionic liquids were designed to have thiol groups, and then phase transfer with aqueous or organic solvents can be adjusted by changing side chain lengths of the cation and the choice of anion. The quantum yield was obtained IL-functionalized CdTe QDs reached up to 40% by post-treatment method.

  • PDF