InP/InGaAs/InP 분포귀환형 회절격자 위에 성장된 InAs/InAlGaAs 양자점의 구조적.광학적 특성

Structural and Optical Characteristics of InAs/InAlGaAs Quantum Dots Grown on InP/InGaAs/InP Distributed Feedback Grating Structure

  • 곽호상 (한국전자통신연구원 IT융합.부품연구소) ;
  • 김진수 (한국전자통신연구원 IT융합.부품연구소) ;
  • 이진홍 (한국전자통신연구원 IT융합.부품연구소) ;
  • 홍성의 (한국전자통신연구원 IT융합.부품연구소) ;
  • 최병석 (한국전자통신연구원 IT융합.부품연구소) ;
  • 오대곤 (한국전자통신연구원 IT융합.부품연구소) ;
  • 조용훈 (충북대학교 물리학과)
  • Kwack, H.S. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, J.S. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, J.H. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Hong, S.U. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Choi, B.S. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Oh, D.K. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute) ;
  • Cho, Y.H. (Department of Physics and Institute for Basic Science Research, Chungbuk National University)
  • 발행 : 2006.05.01

초록

금속유기화학증착기 (metal-organic chemical vapor deposition)를 이용하여 분포귀환형 (distributed feed back) InP/InGaAs/InP 회절격자 구조를 제작하고 원자력간현미경 (atomic force microscopy)과 주사전자현미경 (scanning electron microscopy) 실험을 통해 표면 및 단면을 분석하였다. 그 위에 분자선증착기(molecular beam epitaxy)법을 이용하여 자발형성 (self-assembled) InAs/InAlGaAs 양자점 (quantum dot)을 성장하고, 광학적 특성을 온도변화 광여기 발광 (photoluminescence)으로 회절격자 구조 없이 성장한 양자점 시료와 비교 분석하였다. 회절격자의 간격 대비 폭의 비가 약 30%인 InP/InGaAs/InP 회절격자가 제작되었으며, 그 위에 성장된 양자점의 경우 상온 파장이 1605 nm에서 PL이 관찰되었다. 이는 회절격자 없이 같은 조건에서 성장된 시료의 상온 파장인 1587 nm 보다 장파장에서 발광하였으며, 회절격자의 영향으로 양자점 크기가 변하였음을 조사하였다.

We fabricated the distributed feedback (DFB) InP/InGaAs/InP grating structures on InP (100) substrates by metal-organic chemical vapor deposition, and their structural properties were investigated by atomic force microscopy and scanning electron microscopy. Self-assembled InAs/InAlGaAs quantum dots (QDs) were grown on the InP/InGaAs/InP grating structures by molecular beam epitaxy, and their optical properties were compared with InAs/InAlGaAs QDs without grating structure. The duty of the grating structures was about 30%. The PL peak position of InAs/InAlGaAs QDs grown on the grating structure was 1605 nm, which was red-shifted by 18 nm from that of the InAs/InAlGaAs QDs without grating structure. This indicates that the formation of InAs/InAlGaAs QDs was affected by the existence of the DFB grating structures.

키워드

참고문헌

  1. H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, J. Appl. Phys. 93, 2931 (2003) https://doi.org/10.1063/1.1542914
  2. W. T. Tsang, F. S. Choa, M. C. Wu, Y. K. Chen, R. A. Logan, T. Tanbun-Ek, S. N. G. Chu, K. Tai, A. M. Sergent, and K. W. Wecht, Appl. Phys. Lett. 59, 2375 (1991) https://doi.org/10.1063/1.106020
  3. Z. C. Niu, S. Y. Zhang, H. Q. Ni, D. H. Wu, H. Zhao, H. L. Peng, Y. Q. Xu, S. Y. Li, Z. H. He, Z. W. Ren. Q. Han, X. H. Yang, Y. Du, and R. H. Wu, Appl. Phys. Lett. 87, 231121 (2005) https://doi.org/10.1063/1.2140614
  4. M. Sugawara, Semiconductors and Semimetals, Vol. 60 (Academic Press, San Diego, 1999), Chap. 1
  5. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982) https://doi.org/10.1063/1.92959
  6. Jin Soo Kim, Jin Hong Lee, Sung Ui Hong, Ho-Sang Kwack, Chul Wook Lee, and Dae Kon Oh, ETRI J. 26, 475 (2004) https://doi.org/10.4218/etrij.04.0104.0028
  7. M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, H. White, V. M Ustinov, A. E. Zhukov, Yu. M. Shernyakov, and A. R. Kovsh, Appl. Phys. Lett. 85, 843 (2004) https://doi.org/10.1063/1.1776340
  8. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, B. S. Choi, and D. K. Oh, IEEE Photon. Tech. Lett. 18, 595 (2006) https://doi.org/10.1109/LPT.2006.870187
  9. H. Konig, S. Rennon, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, Appl. Phys. Lett. 75, 1491 (1999) https://doi.org/10.1063/1.124732
  10. L. D. Westbrook, I. D. Henning, A. W. Nelson, and P. J. Fiddyment, IEEE J. Quantum Electron. 21, 612 (1985)
  11. J. C. Cartledge and A. F. Elrefaie, IEEE J. Lightwave Technol. 8, 704 (1990) https://doi.org/10.1109/50.54478
  12. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, Appl. Phys. Lett. 85, 1033 (2004) https://doi.org/10.1063/1.1779964
  13. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, IEEE Photon. Tech. Lett. 16, 1607 (2004) https://doi.org/10.1109/LPT.2004.828494
  14. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, IEEE Photonics Technol. Lett. 13, 767 (2001) https://doi.org/10.1109/68.935797
  15. L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg, J. Appl. Phys. 90, 1666 (2001) https://doi.org/10.1063/1.1383575
  16. Y. H. CHo, B. J. Kwon, J. Barjon, J. Brault, B. Daudin, H. Mariette, and Le Si Dang, Appl. Phys. Lett. 81, 4934 (2002) https://doi.org/10.1063/1.1530375