Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.6.442

Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots  

Oh, Jae-Won (Department of Physics, Kangwon National University)
Kwon, Se-Ra (Department of Physics, Kangwon National University)
Ryu, Mee-Yi (Department of Physics, Kangwon National University)
Jo, Byoung-Gu (Division of Advanced Materials Engineering, Chonbuk National University)
Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.6, 2011 , pp. 442-448 More about this Journal
Abstract
Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.
Keywords
InAs; Quantum dots; Photoluminescence; Time-resolved photoluminescence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. S. Kim, D. K. Oh, P. W. Yu, J. -Y. Leem, J. I. Lee, and C. R. Lee, J. Crystal Growth 261, 38 (2004).   DOI
2 L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films 498, 188 (2006).   DOI
3 J. S. Kim, C. -R. Lee, and S. U. Hong, J. Crystal Growth 305, 78 (2007).   DOI
4 S. U. Hong, J. S. Kim, J. H. Lee, H.-S. Kwack, W. -S. Han, and D. K. Oh, J. Crystal Growth 286, 18 (2006).   DOI
5 A. Convertino, L. Cerri, G. Leo, and S. Viticoli, J. Crystal Growth 261, 458 (2004).   DOI
6 K. J. Lee, B. G. Jo, C. R. Lee, I. W. Lee, J. S. Kim, D. K. Oh, J. S. Kim, S. K. Noh, J. Y. Leem, and M. -Y. Ryu, J. Appl. Phys 109, 113505 (2011).   DOI
7 Y. Qiu, D. Uhl, R. Chacon, and R. Q. Yang, Appl. Phys. Lett. 83, 1704 (2003).   DOI
8 P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, J. Crystal Growth 311, 1625 (2009).   DOI
9 G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 12, 230 (2000).   DOI
10 J. Kim, S. Ha, C. Yang, J. Lee, S. Park, W. J. Choi, and E. Yoon, J. Korean Vaccum Soc. 19, 217 (2010).   DOI
11 H. J. Lee, M. -Y. Ryu, and J. S. Kim, J. Korean Vaccum Soc. 18, 474 (2009).   DOI
12 D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007).   DOI
13 S. Barik, H. H. Tan, C. Jagadish, N. Vukmirović, and P. Harrison, Appl. Phys. Lett. 88, 193112 (2009).
14 K. -H. Kim, J. H. Sim, and I. -H. Bae, J. Korean Vaccum Soc. 18, 208 (2009).   DOI