Browse > Article

Structural and Optical Properties of Self-assembled InAs/InAl(Ga)Ae Quantum Dots on InP  

Kim Jin-Soo (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Lee Jin-Hong (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Hong Sung-Ui (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Kwack Ho-Sang (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Choi Byung-Seok (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Oh Dae-Kon (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Publication Information
Journal of the Korean Vacuum Society / v.15, no.2, 2006 , pp. 194-200 More about this Journal
Abstract
Self-assembled InAs/InAl(Ga)As quantum dots (QDs) were grown on InP substrates by a molecular-beam epiaxy, and their structural and optical properties were investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and room-temperature photoluminescence (PL). AFM images indicated that the InAs quantum structures showed various shapes such as quantum dashes, asymmetric and symmetric QDs mainly caused by the initial surface conditions of InAl(Ga)As with the intrinsic phase separation. For the buried InAs QDs in an InAlGaAs matrix, the average lateral size and height of QDs were 23 and 2 nm, respectively. By changing the growth conditions for the QD samples, the emission wavelength of $1.55{\mu}m$ was obtained, which is one of the wavelength windows for fiber optic communications.
Keywords
Molecular beam epitaxy; Quantum dot; $1.55{\mu}m$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 12, 230 (2000)   DOI   ScienceOn
2 R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, IEEE Photonics Technol. Lett. 13, 767 (2001)   DOI   ScienceOn
3 J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H.-S. Kwack, and D. K. Oh, Appl. Phys. Lett. 83, 3785 (2003)   DOI   ScienceOn
4 J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, IEEE Photon. Tech. Lett. 16, 1607 (2004)   DOI   ScienceOn
5 S. Yoon, Y. Moon, T.-W. Lee, E. Yoon, and Y. D. Kim, Appl. Phys. Lett. 74, 2029 (1999)   DOI   ScienceOn
6 J. Brault, M. Gendry, G. Grenet, G. Hollinger, J. Olivares, B. Salem, T. Benyattou, and G. Bremond, J. Appl. Phys. 92, 506 (2002)   DOI   ScienceOn
7 J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, ETRI J. 26, 475 (2004)   DOI   ScienceOn
8 J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H.-S. Kwack, C. W. Lee, and D. K. Oh, J. Appl. Phys. 94, 6603 (2003)   DOI   ScienceOn
9 L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg, J. Appl. Phys. 90, 1666 (2001)   DOI   ScienceOn
10 J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, B. S. Choi, and D. K. Oh, Appl. Phys. Lett. 87, 053102 (2005)   DOI   ScienceOn
11 J. W. Jang, S. H. Pyun, S. H. Lee, I. C. Lee, W. G. Jeong, R. Stevenson, P. D. Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett. 85, 3675 (2004)   DOI   ScienceOn
12 R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, J. Crystal Growth 251, 248 (2003)   DOI
13 J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, B. S. Choi, and D. K. Oh, IEEE Photon. Tech. Lett. 18, 595 (2006)   DOI   ScienceOn
14 F. Klopf, R. Krebs, A. Wolf, M. Emmerling, J. P. Reithmaier, and A. Forchel, Electron. Lett. 37, 634 (2001)   DOI   ScienceOn
15 S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G, Xie, Appl. Phys. Lett. 72, 3335 (1998)   DOI   ScienceOn
16 Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)   DOI