• Title/Summary/Keyword: QD

Search Result 239, Processing Time 0.025 seconds

Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method (MEE법으로 성장한 InAs/GaAs 양자점의 발광특성)

  • Oh, Jae Won;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • The luminescence properties of InAs/GaAs quantum dots (QDs) grown by a migration enhanced epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The MEE method supplies materials in a series of alternate depositions with migration enhancing time between each deposition. After In source was supplied for 9.3 s, the growth was interrupted for 5 s. Subsequently, As source was open for 3 (AT3), 4(AT4), 6 (AT6), or 9 s (AT9), and the growth was interrupted for 5 s again. This growth sequence was repeated 3 times for the growth of InAs QDs. The PL peak of the AT3 was 1,140 nm and the PL intensity was very weak compared with that of the other three samples. The PL peak of all samples except the AT3 sample was 1,118 nm, which is blueshifted from 1,140 nm, and the PL intensity was increased compared to that of the AT3. These results can be explained by the increased QD density and the improved QD uniformity. The AT6 sample showed the strongest PL intensity and the narrowest full width at half maximum. The PL decay time of AT6 increased with increasing emission wavelength from 940 to 1,126 nm, reaching a maximum decay time of 1.09 ns at 1,126 nm, and then decreased as the emission wavelength was increased further.

Clinical Study on Relationship between Pattern Identifications for Stroke and the Second Derivative of Photoplethysmogram Waveform from Stroke Preventive Examination (중풍 예방 검진에서 중풍 표준화 변증과 가속도맥파의 상관성 연구)

  • Jung, So Youn;Hur, Hee Soo;Jeong, Hae Ryong;Kim, Kyoung Min;Kim, Young Kyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.230-239
    • /
    • 2015
  • This study was performed to find a relationship between each pattern identification and vascular status using the second derivative of photoplethysmogram waveform(SDPTG) indices. We analyzed 200 subjects who participated in stroke preventive examination. We classified the subjects into four groups of pattern identifications; Fire-Heat pattern(火熱證; FH), Yin Deficiency pattern(陰虛證; YD), Qi Deficiency pattern(氣虛證; QD) and Dampness-Phlegm pattern(濕痰證; DP) that based on Korean Standard Pattern Identifications for Stroke-Ⅲ. We studied a relationship between each pattern identification and the SDPTG. The total number of the subject group was 200, whereas the groups were divided into four groups; Fire-Heat pattern group(n=49), Yin Deficiency pattern(n=57), Qi Deficiency pattern(n=45), and Dampness-Phlegm pattern(n=49). b/a ratio was related with age and systolic blood pressure, c/a ratio was associated with age, systolic blood pressure, fasting blood sugar and Total cholesterol, d/a ratio was affected with age, diastolic blood pressure, and hypertension, e/a ratio was related with age and sex and SDPTG AI was associated with age. c/a ratio and d/a ratio were significantly higher in the Fire-Heat group than in the Qi Deficiency group. SDPTG AI was significantly higher in the Qi Deficiency group than in the Fire-Heat group. The Qi Deficiency group was significantly older than the Fire-Heat group and the number of hypertension patients was significantly more in the Fire-Heat group than in the Qi Deficiency group. Through this study, we found out some significant relationships between each pattern identification group and the SDPTG indices.

Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties (InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Noh, Sam Kyu;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.659-662
    • /
    • 2018
  • We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by $4{\times}[0.3ML/1nm\;In_{0.15}Ga_{0.85}As]$ deposition(SML QDs). The QD infrared photodetector(QDIP) structure of $n^+-n^-(QDs)-n^+$ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown with Si doping of $2{\times}10^{17}/cm^3$ and capped by an $In_{0.15}Ga_{0.85}As$ layer at $495^{\circ}C$. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(${\sim}9-14{\mu}m$) of the SML QDIP is longer than that (${\sim}6-12{\mu}m$) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted $Al_{0.08}Ga_{0.92}As$ layer.

Diffusion Behaviors of B and P at the Interfaces of Si/$SiO_2$ Multilayer System After the Annealing Process

  • Jang, Jong-Shik;Kang, Hee-Jae;Hwang, Hyun-Hye;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.232-232
    • /
    • 2012
  • The doping of semiconducting elements is essential for the development of silicon quantum dot (QD) solar cells. Especially the doping elements should be activated by substitution at the crystalline sites in the crystalline silicon QDs. However, no analysis technique has been developed for the analysis of the activated dopants in silicon QDs in $SiO_2$ matrix. Secondary ion mass spectrometry (SIMS) is a powerful technique for the in-depth analysis of solid materials and the impurities analysis of boron and phosphorus in semiconductor materials. For the study of diffusion behaviour of B and P by SIMS, Si/$SiO_2$ multilayer films doped by B or P were fabricated and annealed at high temperatures for the activated doping of B and P. The distributions of doping elements were analyzed by SIMS. Boron found to be preferentially distributed in Si layer rather than the $SiO_2$ layer. Especially the B in the Si layers was separated to two components of an interfacial component and a central one. The central component was understood as the activated elements. On the other hand, phosphorus did not show any preferred diffusion.

  • PDF

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid

  • Le, Thu-Huong;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1523-1528
    • /
    • 2014
  • Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.

The Direct Digital Frequency Synthesizer of Parallel Type Using the Differential Quantization (차동 양자화를 사용한 병렬 방식의 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Lee, Yun-Sik;Lee, Eui-Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.126-137
    • /
    • 2007
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. And we design the phase-to-sine converter using the phase accumulator of parallel type for generating the high frequency. The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is saved by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is decreased according to the ROM size reduction.

  • PDF

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors (ZnO양자점 기반 센서의 초고감도 수소 검지 특성)

  • Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.

CdSe/ZnS 양자점 전계발광소자에서 전하수송층인 Zinc Tin Oxide의 비저항이 소자의 발광 특성에 미치는 영향

  • Yun, Seong-Ryong;Jeon, Min-Hyeon;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.44-44
    • /
    • 2011
  • Unipolar 구조의 양자점 발광소자는 소자에 주입되는 전자로 구동 가능하게 설계되어 bipolar 구조와 달리 직류뿐만 아니라 교류로도 구동이 가능하다. 소자의 구조는 패턴된 ITO 유리기판 위에 Radio frequency magnetron sputter로 성장시킨 투명한 금속산화층 사이에 콜로이드로 분산된 양자점이 포함되어 있다. 본 연구에서는, 전하 수송층으로 사용되는 Zinc Tin Oxide (ZTO)가 전압 인가 시 발생하는 과부하로 인해 낮은 전계발광(electroluminescence, EL)특성이 나타나는 문제점이 있다. 이를 해결하고자 ZTO층의 비저항과 EL특성 사이의 관계를 알아보고, ZTO의 비저항 값을 변화시키기 위해 sputter 공정 중 인가 전력과 작업압력, 산소 분압 등의 성장 조건을 변화시켰다. ZTO의 조성비에 따른 비저항 및 전기적 특성을 홀 측정 장비로 측정하였다. 인가전력이 낮고 작업압력이 낮을수록 비저항 값이 낮았으며, 그에 따라 소자의 동작전압이 낮아지고 EL특성 또한 우수하게 나타났다.

  • PDF

Encapsulation of CdSe/ZnS Quantum Dots in Poly(ethylene glycol)-Poly(D,L-lactide) Micelle for Biomedical Imaging and Detection

  • Lee, Yong-Kyu;Hong, Suk-Min;Kim, Jin-Su;Im, Jeong-Hyuk;Min, Hyun-Su;Subramanyam, Elango;Huh, Kang-Moo;Park, Sung-Woo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.330-336
    • /
    • 2007
  • Luminescent CdSe/ZnS QDs, with emission in the red region of the spectrum, were synthesized and encapsulated in poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer micelles, to prepare water-soluble, bio-compatible QD micelles. PEG-PLA diblock copolymers were synthesized by ring opening polymerization of D,L-lactide, in the presence of methoxy PEG as a macro initiator. QDs were encapsulated with PEG-PLA polymers using a solid dispersion method in chloroform. The resultant polymer micelles, with encapsulated QDs, were characterized using various analytical techniques, such as UV- Vis measurement, light scattering, fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic forced microscopy (AFM). The polymer micelles, with encapsulated QDs, were spherical and showed diameters in the range of 20-150 nm. The encapsulated QDs were highly luminescent, and have high potential for applications in biomedical imaging and detection.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.