Browse > Article
http://dx.doi.org/10.5369/JSST.2020.29.2.105

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors  

Lee, Hyun-Sook (Department of Materials Science and Engineering, Yonsei University)
Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.2, 2020 , pp. 105-111 More about this Journal
Abstract
Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.
Keywords
Hydrogen sensor; ZnO; nanoparticle; quantum dot; Pt decoration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Korotcenkov, S. D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, No. 3, pp. 1402-1433, 2009.   DOI
2 H. C. Sun, Y. C. Huang, and C. M. Huang, "A review of dissolved gas analysis in power transformers", Energy Procedia, Vol. 14, pp. 1220-1225, 2012.   DOI
3 J. A. Perman, S. Modler, R. G. Barr, and P. Rosenthal, "Fasting breath hydrogen concentration: Normal values and clinical application", Gastroenterology, Vol. 87, No. 6, pp. 1358-1363, 1984.   DOI
4 J. Dabritz, M. Muhlbauer, D. Domagk, N. Voos, G. Hennebohl, M. L. Siemer, and D. Foell, "Significance of hydrogen breath tests in children with suspected carbohydrate malabsorption", BMC Pediatr., Vol. 14, No. 59, pp. 1-9, 2014.   DOI
5 C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuators B, Vol. 128, No. 1, pp. 320-325, 2007.   DOI
6 V. R. Katti, A. K. Debnath, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, "Passivated thick film catalytic type $H_2$ sensor operating at low temperature", Sens. Actuators B, Vol. 84, No 2-3, pp. 219-225, 2002.   DOI
7 I. Simon and M. Arndt, "Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications", Sens. Actuators A, Vol. 97-98, pp. 104-108, 2002.   DOI
8 G. Jessop, "Katharometers", J. Sci. Instrum., Vol. 43, No. 11, pp. 777-782, 1966.   DOI
9 Y. Chao, S. Yao, W. J. Buttner, and J. R. Stetter, "Amperometric sensor for selective and stable hydrogen measurement", Sens. Actuators B, Vol. 106, No. 2, pp. 784-790, 2005.   DOI
10 R. C. Hughes and W. K. Schubert, "Thin films of Pd/Ni alloys for detection of high hydrogen concentrations", J. Appl. Phys., Vol. 71, No. 1, pp. 542-544, 1992.   DOI
11 M. Wang, A. J. Vandermaar, and K. D. Srivastava, "Review of condition assessment of power transformers in service", IEEE Electr. Insul. Mag., Vol. 18, No. 6, pp. 12-25, 2002.   DOI
12 S. Dong, F. Bai, J.F. Li, and D. Viehland, "Sound-resonance hydrogen sensor", Appl. Phys. Lett., Vol. 82, No. 25, pp. 4590-4592, 2003.   DOI
13 T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, "Self-assembled monolayerenhanced hydrogen sensing with ultrathin palladium films", Appl. Phys. Lett., Vol. 86, No. 20, pp. 203104(1)-203104(3), 2005.   DOI
14 D. R. Baselt, B. Fruberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. MCCorkle, and B. Warmack, "Design and performance of a microcantileverbased hydrogen sensor", Sens. Actuators B, Vol. 88, No. 2, pp. 120-131, 2003.   DOI
15 D. Iannuzzi, M Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, "A fiber-top cantilever for hydrogen detection", Sens. Actuators B, Vol. 121, No. 2, pp. 706-708, 2007.   DOI
16 W. P. Jakubik, M. W. Urbaczyk, S. Kochowski, and J. Bodzenta, "Bilayer structure for hydrogen detection in a surface acoustic wave sensor system", Sens. Actuators B, Vol. 82, No. 2-3, pp. 265-271, 2002   DOI
17 M. A. Butler, "Micromirror optical-fiber hydrogen sensor", Sens. Actuators B, Vol. 22, No. 2, pp. 142-145, 1994.   DOI
18 S. Roy, C. Jacob, S. Basu, "Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature", Sens. Actuators B, Vol. 94, pp. 298-303, 2003.   DOI
19 R. Yoo, D. Lee, S. Cho, and W. Lee, "Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant", Sens. Actuators B, Vol. 254, pp. 1242-1248, 2018.   DOI
20 A. Koo, R. Yoo, S. P. Woo, H.-S. Lee, and W. Lee, "Enhanced acetone-sensing properties of Pt-decorated aldoped ZnO nanoparticles", Sens. Actuators B, Vol. 280, pp. 109-119, 2019.   DOI
21 Y. Shen, D. Wei, M. Li, S. Gao, C. Han, and B. Cui, "Microstructure and room-temperature H2 sensing properties of undoped and impurity-doped SnO2 nanowires", Chem. Lett., Vol. 42, No. 5, pp. 492-494, 2013.   DOI
22 M. S. Park, J. H. Lee, Y. Park, R. Yoo, S. Park, H. Jung, W. Kim, H.-S. Lee, and W. Lee, "Doping effects of ZnO quantum dots on the sensitive and selective detection of acetylene for dissolved-gas analysis applications of transformer oil", Sens. Actuators B, Vol. 299, pp. 126992(1)-126992(10), 2019.
23 J. Zhao, W. Wang, Y. Liu, J. Ma, X. Li, Y. Du, and G. Lu, "Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance". Sens. Actuators B, Vol. 160, No. 1, pp. 604-608, 2011.   DOI
24 T. Yamazaki, H. Okumura, C. Jin, A. Nakayama, T. Kikuta, and N. Nakatani, "Effect of density and thickness on H2-gas sensing property of sputtered SnO2 films", Vacuum, Vol. 77, No. 3, pp. 237-243, 2005.   DOI
25 M. H. Kim, B. Jang, W. Kim, and W. Lee, "Enhanced hydrogen sensing properties of Pd-coated SnO2 nanorod arrays in nitrogen and transformer oil", Sens. Actuators B, Vol. 283, pp. 890-896, 2019.   DOI
26 Q. A. Drmosh and Z. H. Yamani, "Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles", Ceram. Int., Vol. 42, No. 10, pp. 12378-12384, 2016.   DOI
27 K. Hassan, A. Uddin, G. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultra-thin films", Sens. Actuators B, Vol. 234, pp. 435-445, 2016   DOI
28 K. Hassan, A. Uddin, F. Ullah, Y. Kim, and G. Chung, "Platinum/palladium bimetallic ultra-thin film decorated on a one dimensional ZnO nanorods array for use as fast response flexible hydrogen sensor", Mater. Lett., Vol. 176, pp. 232-236, 2016.   DOI
29 C. Zhang, A. Kanta, H. Yin, A. Boudiba, J. D'Haen, M. Olivier, and M. Debliquy, "H2 sensors based on WO3 thin films activated by platinum nanoparticles synthesized by electroless process", Int. J. Hydrog. Energy, Vol. 38, No. 6, pp. 2929-2935, 2013.   DOI
30 K. Hassan and G. Chung, "Catalytically activated quantumsize Pt/Pd bimetallic core-shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection", Sens. Actuators B, Vol. 239, pp. 824-833, 2017.   DOI
31 S. Fardindoost, A. zad, F. Rahimi, and R. Ghasempou, "Pd doped WO3 films prepared by solegel process for hydrogen sensing", Int. J. Hydrog. Energy, Vol. 35, No. 2, pp. 854-860, 2010.   DOI
32 A. Esfandiar, A. Irajizad, O Akhavan, S. Ghasemi, and M. Gholami, "Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors", Int. J. Hydrog. Energy, Vol. 39, No 15, pp. 8169-8179, 2014.   DOI
33 X. Du, Y. Wang, Y. Mu, L. Gui, P. Wang, and Y. Tang, "A new highly selective H2 sensor based on TiO2/PtO-Pt duallayer films", Chem. Mater., Vol. 14, No. 9, pp. 3953-3957, 2002.   DOI
34 A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, and M. R. Gholami, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing", Int. J. Hydrog. Energy, Vol. 37, No. 20, pp. 15423-15432, 2012.   DOI
35 S. Joo, I. Muto, and N. Hara, "Hydrogen gas sensor using Pt- and Pd-Added anodic TiO2 nanotube films", J. Electrochem. Soc., Vol. 157, No. 6, pp. 221-226, 2010.