Encapsulation of CdSe/ZnS Quantum Dots in Poly(ethylene glycol)-Poly(D,L-lactide) Micelle for Biomedical Imaging and Detection

  • Lee, Yong-Kyu (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Hong, Suk-Min (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Kim, Jin-Su (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Im, Jeong-Hyuk (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Min, Hyun-Su (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Subramanyam, Elango (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Huh, Kang-Moo (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Sung-Woo (Department of Scientific Criminal Investigation, Chungnam National University)
  • Published : 2007.06.30

Abstract

Luminescent CdSe/ZnS QDs, with emission in the red region of the spectrum, were synthesized and encapsulated in poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer micelles, to prepare water-soluble, bio-compatible QD micelles. PEG-PLA diblock copolymers were synthesized by ring opening polymerization of D,L-lactide, in the presence of methoxy PEG as a macro initiator. QDs were encapsulated with PEG-PLA polymers using a solid dispersion method in chloroform. The resultant polymer micelles, with encapsulated QDs, were characterized using various analytical techniques, such as UV- Vis measurement, light scattering, fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic forced microscopy (AFM). The polymer micelles, with encapsulated QDs, were spherical and showed diameters in the range of 20-150 nm. The encapsulated QDs were highly luminescent, and have high potential for applications in biomedical imaging and detection.

Keywords

References

  1. M. Han, X. Gao, J. Z. Su, and S. Nie, Nat. Biotechnol., 19, 631 (2001) https://doi.org/10.1038/83433
  2. X. Gao, C. W. Chan Warren, and S. Nie, J. Biomed. Opt., 7, 532 (2002)
  3. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, Curr. Opin. Biotechnol., 13, 40 (2002)
  4. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nat. Biotechnol., 21, 41 (2003)
  5. H. Xu, M. Y. Sha, E. Y. Wong, J. Uphoff, Y. Xu, J. A. Treadway, A. Truong, E. O'Brien, S. Asquith, M. Stubbins, N. K. Spurr, E. H. Lai, and W. Mahoney, Nucleic Acids Res., 31, e43 (2003) https://doi.org/10.1093/nar/gng003
  6. P. S. Eastman, W. Ruan, M. Doctolero, R. Nuttall, G. D. Feo, J. S. Park, J. S. F. Chu, P. Cooke, J. W. Gray, S. Li, and F. F. Chen, Nano Lett., 6, 1059 (2006)
  7. A. P. Alivisatos, Science, 271, 933 (1996)
  8. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993)
  9. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996)
  10. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998) https://doi.org/10.1126/science.281.5379.998
  11. Y. Wang, Z. Tang, M. A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, J. Phys. Chem. B., 108, 15461 (2004)
  12. J. Zhuang, X. Zhang, G. Wang, D. Li, W. Yang, and T. Li, J. Mater. Chem., 13, 1853 (2003)
  13. R. Kho, C. L. Torres-Martinez, and R. K. Mehra, J. Colloid Interf. Sci., 227, 561 (2000)
  14. J. O. Winter, T. Y. Liu, B. A. Korgel, and C. E. Schmidt, Adv. Mater., 13, 1673 (2001)
  15. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993)
  16. Z. A. Peng and X. Peng, J. Am. Chem. Soc., 123, 183 (2001) https://doi.org/10.1021/ja002793v
  17. W. W. Yu, Y. A. Wang, and X. Peng, Chem. Mater., 15, 4300 (2003) https://doi.org/10.1021/cm020766t
  18. W. W. Yu and X. Peng, Angew. Chem. Int. Ed., 41, 2368 (2002)
  19. D. Battaglia and X. Peng, Nano Lett., 2, 1027 (2002)
  20. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, Chem. Mater., 16, 3318 (2004)
  21. R. E. Bailey and S. Nie, J. Am. Chem. Soc., 125, 7100 (2003)
  22. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Nat. Biotechnol., 22, 93 (2004) https://doi.org/10.1038/nbt0104-4
  23. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, 538 (2005)
  24. X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998)
  25. H. Mattoussi, et al., J. Am. Chem. Soc., 122, 12142 (2000)
  26. D. Gerion, et al., J. Phys. Chem. B, 105, 8861 (2001) https://doi.org/10.1021/jp003045v
  27. C. Allen, D. Maysinger, and A. Eisenberg, Colloid Surface B, 13, 3 (1999)
  28. Y. P. Jung, Y. K. Son, and J. H. Kim, Macromol. Res., 15, 82 (2007) https://doi.org/10.1007/BF03218756
  29. L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002)