Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1523

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid  

Le, Thu-Huong (Department of Chemistry, Chonnam National University)
Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
Publication Information
Abstract
Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.
Keywords
Silicon quantum dot; Electronic structure; Cyclic voltammetry; Quasi-particle gap; Optical gap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zaknoon, B.; Gap, B. Nano Lett. 2008, 8, 1689-1694.   DOI
2 Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737-18753.   DOI
3 Salafsky, J. S. Solid-State Electronics 2001, 45, 53-58.   DOI
4 Peralvarez, M.; Carreras, J.; Barreto, J.; Morales, A.; Dominguez, C.; Garrido, B. Appl. Phys. Lett. 2008, 92, 241104.   DOI
5 Buuren, T. V.; Dinh, L. N.; Chase, L. L.; Siekhaus, J. W.; Terminello, L. J. Phys. Rev. Lett. 1998, 80, 3803-3806.   DOI   ScienceOn
6 Inamdar, S. N.; Ingole, P. P.; Haram, S. K. ChemPhysChem. 2008, 9, 2574-2579.   DOI
7 Erol, K.; Bucking, W.; Sven, A.; Giernoth, R.; Nann, T. ChemPhysChem. 2006, 7, 77-81.   DOI
8 Hou, B.; Parker, D.; Kissling, G. P.; Jones, J. A.; Chern, D.; Fermin, D. J. J. Phys. Chem. C 2013.
9 Amelia, M.; Lincheneau, C.; Silvi, S.; Credi, A. Chem. Soc. Rev. 2012, 41, 5728-5743.   DOI   ScienceOn
10 Gupta, A.; Swihart, M. T.; Wiggers, H. Adv. Funct. Master. 2009, 19, 696-703.   DOI
11 Sato, R.; Tsuji, H.; Hirakuri, K.; Fukata, N.; Yamauchi, Y. Chem. Commun. 2009, 3759-3761.
12 Tilley, R. D.; Warner, J. H.; Yamamoto, K.; Matsui, I.; Fujimori, H. Chem. Commun. 2005, 14, 1833.
13 Sudeep, P. K.; Page, Z.; Emrick, T. Chem. Commun. 2008, 6126-6127.
14 Nunez, J. R. R.; Kelly, J. A.; Henderson, E. J.; Veinot, J. G. C. Chem. Matter. 2012, 24, 346-352.   DOI
15 Yang, C. S.; Bley, R. A.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. J. Am. Chem. Soc. 1999, 121, 5191-5195.   DOI   ScienceOn
16 Chabal, J. Y.; Raghavachari, K.; Zhang, X.; Garfunkel, E. Phys. Rev. B 2002, 66, 161315.   DOI
17 Haram, S. K.; Kchirsagar A.; Gujarathi, Y. D.; Ingole, P. P.; Nene, O. A.; Markad, G. B.; Nanavati, S. P. J. Phys. Chem. C 2011, 115, 6243-6249.
18 Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. J. Chem. Phys. Vol. 22 July 2003, 119(4).
19 Dissanayake, D. M. N. M.; Lutz, T.; Curry, R. J.; Silva, S. R. P. Appl. Phys. Lett. 2008, 93, 043501.   DOI
20 Wolkin, V. M.; Jorne, J.; Fauchet, M. P. Phys. Rev. Letter. 1999, 82.
21 Mai, X. D.; Dao, D. T.; Sohee, J.; Hyun, D. J. Chem. Asian J. 2013, 8, 653-664.   DOI   ScienceOn