• Title/Summary/Keyword: Q-curvature

Search Result 49, Processing Time 0.031 seconds

Curvature Based ECG Signal Compression for Effective Communication on WPAN

  • Kim, Tae-Hun;Kim, Se-Yun;Kim, Jeong-Hong;Yun, Byoung-Ju;Park, Kil-Houm
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As electrocardiogram (ECG) signals are generally sampled with a frequency of over 200 Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently on a wireless personal area network (WPAN). In this paper, an ECG signal compression method for communications onWPAN, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, and T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes were extracted with the proposed method, which uses local extrema of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes were added according to the iterative vertex selectionmethod. Through the experimental results on the ECG signals from Massachusetts Institute of Technology-Beth Israel hospital arrhythmia database, it was concluded that the vertexes selected by the proposed method preserved all feature points of the ECG signals. In addition, it was more efficient than the amplitude zone time epoch coding method.

THE ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS AND PSEUDOCONVEXITY OF GENERAL ORDER IN KÄHLER MANIFOLDS

  • Saber, Sayed
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1211-1223
    • /
    • 2016
  • Let M be an n-dimensional $K{\ddot{a}}hler$ manifold with positive holomorphic bisectional curvature and let ${\Omega}{\Subset}M$ be a pseudoconvex domain of order $n-q$, $1{\leq}q{\leq}n$, with $C^2$ smooth boundary. Then, we study the (weighted) $\bar{\partial}$-equation with support conditions in ${\Omega}$ and the closed range property of ${\bar{\partial}}$ on ${\Omega}$. Applications to the ${\bar{\partial}}$-closed extensions from the boundary are given. In particular, for q = 1, we prove that there exists a number ${\ell}_0$ > 0 such that the ${\bar{\partial}}$-Neumann problem and the Bergman projection are regular in the Sobolev space $W^{\ell}({\Omega})$ for ${\ell}$ < ${\ell}_0$.

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

DNS of turbulent heat transfer in a concentric annulus (동심 환형관 내 난류 열전달의 직접 수치 모사)

  • Chung Seo Yoon;Sung Hyung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.827-830
    • /
    • 2002
  • A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at $Re_{Dh}=8900\;and\;Pr=0.71$ for two radius ratios ($R_{1}/R_{2}=0.1\;and\;0.5$) and $q^{\ast}=1.0$. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. The present numerical results show that the turbulent structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls.

  • PDF

QUATERNIONICALLY PROJECTIVE CORRESPONDENCE ON AN ALMOST QUATERNIONIC STRUCTURE

  • Ki, U-Hang;Pak, Jin-Suk;Yoon, Dae-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.855-867
    • /
    • 1998
  • In the present paper, we introduce the notions of quaternionically planar curves and quaternionically projective transformations to the case of almost quaternionic manifold with symmetric affine connection. Also, we obtain an invariant tensor field under the quaternionically projective transformation, and show that a quaternionic Kahlerian manifold with such a vanishing tensor field is of constant Q-sectional curvature.

  • PDF

REAL n-DIMENSIONAL QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IMMERSED IN QP(n+p)/4

  • Kim, Hyang-Sook;Kwon, Jung-Hwan;Pak, Jin-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.111-125
    • /
    • 2009
  • The purpose of this paper is to study n-dimensional QR-submanifolds of (p-1) QR-dimension immersed in a quaternionic projective space $QP^{(n+p)/4}$ of constant Q-sectional curvature 4 and especially to determine such submanifolds under the additional condition concerning with shape operator.

Eigenvalues of Type r of the Basic Dirac Operator on Kähler Foliations

  • Jung, Seoung Dal
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • In this paper, we prove that on a K$\ddot{a}$hler spin foliatoin of codimension $q=2n$, any eigenvalue ${\lambda}$ of type $r(r{\in}\{1,{\cdots},[\frac{n+1}{2}]\})$ of the basic Dirac operator $D_b$ satisfies the inequality ${\lambda}^2{\geq}\frac{r}{4r-2}\;{\inf}_M{\sigma}^{\nabla}$, where ${\sigma}^{\nabla}$ is the transversal scalar curvature of $\mathcal{F}$.

EINSTEIN WARPED PRODUCT MANIFOLDS WITH 3-DIMENSIONAL FIBER MANIFOLDS

  • Jung, Yoon-Tae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.235-242
    • /
    • 2022
  • In this paper, we consider the existence of nonconstant warping functions on a warped product manifold M = B × f2 F, where B is a q(> 2)-dimensional base manifold with a nonconstant scalar curvature SB(x) and F is a 3- dimensional fiber Einstein manifold and discuss that the resulting warped product manifold is an Einstein manifold, using the existence of the solution of some partial differential equation.