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SEMISYMMETRIC PROPERTIES OF ALMOST COKÄHLER

3-MANIFOLDS

Uday Chand De, Pradip Majhi, and Young Jin Suh

Abstract. In this paper it is proved that on an almost coKähler 3-

manifoldM , (i)M is h-semisymmetric, (ii) the curvature conditionQ·R =
0 and (iii) M is coKähler are equivalent.

1. Introduction

In the last several decades, the study of almost contact geometry has been
an interesting research field for both of pure mathematical and physical view-
points. One important class of differentiable manifolds in the framework of
almost contact geometry is known as the coKähler manifolds, which were first
introduced by Blair [1] and studied by Blair [2], Goldberg and Yanno [6] and
Olszak et al. ([4], [8]). The new terminology was recently adopted by many
authors mainly due to Li [7], in which the author gave a topological construc-
tion of coKähler manifolds via Kähler mapping tori. According to Li’s work, we
see that the coKähler manifolds are really odd dimensional analogues of Kähler
manifolds. We also refer the readers to a recent survey by Cappelletti-Montano
et al. [3] and many references therein regarding geometric and topological re-
sults on coKähler manifolds.

As a generalization of coKähler manifolds and an analogy of almost Kähler
manifolds, the almost coKähler manifolds were widely studied by many au-
thors recently. In particular, D. Perrone [10] obtain a complete classification
of homogeneous almost coKähler manifolds of dimension three and also gave a
local characterization of such manifolds under a condition of local symmetry.
Also, D. Perrone [11] characterized the minimality of the Reeb vector field of
three-dimensional almost coKähler manifolds. In addition, a new local clas-
sification of three-dimensional almost coKähler manifolds under the condition
“∇ξh = 2fφh and ||grad(λ)|| is a non-zero constant, where f is a smooth
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function and λ denotes a positive eigen value function of h = 1
2£ξφ” was also

provided by Erken and Murathan [5].
In a recent paper [16] Wang proves that an almost coKähler 3-manifold is

semisymmetric if and only if it is coKähler. Also Wang ([14], [15]) characterizes
almost coKähler manifolds satisfying certain curvature conditions. Motivated
by the above studies in the present paper we characterize h-semisymmetric
almost coKähler 3-manifolds and almost coKähler 3-manifolds satisfying the
curvature condition Q · R = 0, where R is the Riemannian curvature tensor
and Q is the Ricci operator.

A Riemannian or a semi-Riemannian manifold is said to be semisymmetric
if

R(X,Y ) ·R = 0

holds, where R(X,Y ) is the curvature operator. A general study of semisym-
metric Riemannian manifolds was made by Szabó [12].

A contact metric manifold is said to be φ-semisymmetric if

R(X,Y ) · φ = 0

holds [17].
An almost coKähler manifold is said to be h-semisymmetric if R · h = 0,

that is, if

(R(X,Y ) · h)(Z) = 0

for all vector fields X, Y, Z, where h = 1
2£ξφ.

An example of a curvature condition of semisymmetry type is the following

Q ·R = 0,(1)

where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ) and Q · R is
defined by

(Q ·R)(X,Y )Z = Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ

for all smooth vector fields X, Y , Z.
A natural extension of such curvature conditions form curvature conditions

of pseudosymmetry type. The curvature condition Q ·R = 0 have been studied
by Verheyen et al. in [13].

In the present paper we obtain an equivalent condition under which an
almost coKählar manifold to be a co-Kählar manifold. More precisely the
following theorem is proved:

Theorem 1.1. In an almost coKähler 3-manifold M the following conditions
are equivalent:

(i) M is h-semisymmetric.
(ii) M satisfies Q ·R = 0.
(iii) M is coKähler.
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2. Almost coKähler 3-manifolds

By an almost contact metric structure [2] defined on a smooth differentiable
manifold M2n+1 of dimension 2n+ 1 we mean a structure (φ, ξ, η, g) satisfying

φ2 = −id+ η ⊗ ξ, η(ξ) = 1,(2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(3)

for all vector field X and Y , where φ is a (1, 1)-type tensor field, ξ is a vector
field called the Reeb vector field and η is a 1-form called the almost contact
1-form and g is the Riemannian matric called compatible metric with respect
to the almost contact structure.

In the present paper, by an almost coKähler manifold we mean an almost
contact metric manifold (M2n+1, φ, ξ, η, g) in which η and Φ are closed, where
the fundamental 2-form Φ of the almost contact metric manifold M2n+1 is
defined by

Φ(X,Y ) = g(X,φY )

for all vector fields X and Y.
We consider the product M2n+1 × R of an almost contact metric manifold

M2n+1 and R and define on it an almost contact structure J by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
),

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and
f is a C∞-function on M2n+1 × R. We denote by [φ, φ] the Nijenhuis tensor of
φ. If

[φ, φ] = −2dη ⊗ ξ
holds, or equivalently, J is integrable, then the almost contact metric structure
is said to be normal. A normal almost coKähler manifold is called a coKähler
manifold.

On an almost coKähler manifold (M2n+1, φ, ξ, η, g) we set h = 1
2£ξφ, where

£ is the Lie differentiation. We consider the Jacobi operator l = R(·, ξ)ξ
generated by ξ and define h′ = h ◦ φ, where R is the Riemannian curvature
tensor of g. We know that ([2], [8], [9]) the three (1, 1)-type tensor fields l,
h′ and h are symmetric and satisfy hξ = 0, lξ = 0, trh = 0, tr(h′) = 0 and
hφ+ φh = 0 and

∇ξ = h′.(4)

We denote by D the distribution D = kerη which is of dimension 2n. It is easy
to check that each integral manifold of D, with the restriction of φ, admits an
almost Kähler structure. If the associated almost Kähler structure is integrable,
or equivalently,

(∇Xφ)Y = g(hX, Y )ξ − η(Y )hX(5)
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for any vector fields X, Y, then M2n+1 is said to have Kählerian leaves. We
see that an almost coKähler manifold is coKähler if and only if [1]

∇φ = 0(⇔ ∇Φ = 0).(6)

Therefore, it follows directly that a 3-dimensional almost coKähler manifold is
coKähler if and only if h vanishes ([8]).

3. Some results on almost coKähler 3-manifolds

Let M be an almost coKähler 3-manifolds. Let U1 be the open subset of M
satisfying h 6= 0 and U2 be the open subset of M defined by U2={p ∈M : h = 0
in a neighborhood of p}. Therefore U1

⋃
U2 is an open and dence subset of

M and there exists a local orthonormal basis {ξ, e, φe} of three smooth unit
eigen vectors of h for any point p ∈ U1

⋃
U2. On U1, we set he = λe and hence

hφe = −λφe, where λ is a positive eigen value function on U1. Note that λ is
continuous on M and smooth on U1

⋃
U2.

Lemma 3.1 ([11]). On U1, the Levi-Civita connection is given by

∇ξξ = 0, ∇ξe = aφe, ∇ξφe = −ae, ∇eξ = −λφe, ∇φeξ = −λe,

∇ee =
1

2λ
(φe(λ) + σ(e))φe, ∇φeφe =

1

2λ
(e(λ) + σ(φe))e,

∇φee = λξ − 1

2λ
(e(λ) + σ(φe))φe, ∇eφe = λξ − 1

2λ
(φe(λ) + σ(e))e,

where a is a smooth function and σ is the 1-form defined by σ(·) = S(·, ξ).

The Ricci operator Q of an almost coKähler 3-manifold is expressed on U1

by [11]

Qξ = −2λ2ξ + σ(e)e+ σ(φe)φe,(7)

Qe = σ(e)ξ +
1

2
(r + 2λ2 − 4λa)e+ ξ(λ)φe,(8)

Qφe = σ(φe)ξ + ξ(λ)e+
1

2
(r + 2λ2 + 4λa)φe,(9)

with respect to the local basis {ξ, e, φe}, where r denotes the scalar curvature.
Now, it is well known that the curvature tensor R of any Riemannian 3-

manifold is given by

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X − g(QX,Z)Y

− r

2
[g(Y,Z)X − g(X,Z)Y ]

for any vector fields X,Y, Z.
Applying the relations (7)-(9), in the above expression we obtain the curva-

ture tensor R of a non-coKähler almost coKähler 3-manifold M as the following:

R(e, ξ)ξ = −λ(λ+ 2a)e+ ξ(λ)φe,(10)
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R(φe, ξ)ξ = ξ(λ)e− λ(λ− 2a)φe,(11)

R(e, ξ)e = λ(λ+ 2a)ξ − σ(φe)φe,(12)

R(e, ξ)φe = −ξ(λ)ξ + σ(φe)e,(13)

R(φe, ξ)e = −ξ(λ)ξ + σ(e)φe,(14)

R(φe, ξ)φe = λ(λ− 2a)ξ − σ(e)e,(15)

R(e, φe)ξ = σ(φe)e− σ(e)φe,(16)

R(e, φe)e = −σ(φe)ξ − (
r

2
+ 2λ2)φe,(17)

R(e, φe)φe = σ(e)ξ + (
r

2
+ 2λ2)e.(18)

At the end of this section we present some results which will be used in the
last section:

Theorem 3.2 ([16]). An almost coKähler 3-manifold is coKähler if and only
if it is semisymmetric.

Theorem 3.3 ([6]). An almost coKähler manifold is coKähler if and only if
R · φ = φ ·R, that is, the manifold is φ-semisymmetric.

4. h-semisymmetric almost coKähler 3-manifolds

In this section we prove the following:

Proposition 4.1. An almost coKähler 3-manifold is h-semisymmetric if and
only if it is coKähler.

To prove the Proposition we first state and prove the following:

Lemma 4.2. A non-coKähler almost coKähler 3-manifold is h-semisymmetric
if and only if the following equations hold:

λσ(φe) = 0,(19)

λ(r + 4λ2) = 0,(20)

λσ(e) = 0,(21)

λ2(λ+ 2a) = 0,(22)

λξ(λ) = 0,(23)

λ2(λ− 2a) = 0.(24)
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Proof. Using the equations (10)-(18), after a direct calculation we obtain the
following equations:

(R(e, φe) · h)(e) = λσ(φe)ξ + λ(r + 4λ2)φe,(25)

(R(e, φe) · h)(φe) = 2λσ(e)ξ + λ(r + 4λ2)e,(26)

(R(e, φe) · h)(ξ) = λσ(φe)e+ λσ(e)φe,(27)

(R(e, ξ) · h)(e) = λ2(λ+ 2a)ξ − 2λσ(φe)φe,(28)

(R(e, ξ) · h)(φe) = λξ(λ)ξ − 2λσ(φe)e,(29)

(R(e, ξ) · h)(ξ) = λ2(λ+ 2a)e+ λξ(λ)φe,(30)

(R(φe, ξ) · h)(e) = λξ(λ)ξ − 2λσ(e)φe,(31)

(R(φe, ξ) · h)(φe) = λ2(λ− 2a)ξ + 2λσ(e)e,(32)

(R(φe, ξ) · h)(ξ) = λ2(λ− 2a)φe+ λξ(λ)e.(33)

Now if the manifold is h-semisymmetic, then the l.h.s of the equations (25)-
(33) vanish. Finally, the equations (19)-(24) follow directly from the equa-
tions (25)-(33), on the argument that {e, φe, ξ} is a basis. Conversely, if the
conditions (19)-(24) hold, then it is straight forward that the manifold is h-
semisymmetic. �

Proof of Proposition 4.1. For a coKähler 3-manifold h = 0 implies R(X,Y ) ·
h = 0, that is, the coKähler 3-manifold is h-semisymmetric. Then to complete
the proof, we are remains to prove that a non-coKähler almost coKähler 3-
manifold can not be h-semisymmetric. For this, let us assume that a non-
coKähler almost coKähler 3-manifold M is h-semisymmetric. From (22) and
(24) we get a = 0. Then from (22) we have λ = 0, which contradicts our
assumption, that is, M is coKähler. �

5. Almost coKähler 3-manifolds satisfying Q · R = 0

In the present section, we prove the following:

Proposition 5.1. An almost coKähler 3-manifold satisfies the curvature con-
dition Q ·R = 0 if and only if it is coKähler.

To prove the Proposition we first state and prove the following:
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Lemma 5.2. A non-coKähler almost coKähler 3-manifold satisfies the curva-
ture condition Q ·R = 0 if and only if the following equations hold:

(3r + 8λ2 − 8λa)σ(φe) = 0,(34)

σ(e)σ(φe) = 0,(35)

σ(e)ξ(λ),(36)

σ(e) = 0,(37)

(3r + 6λ2 − 4λa)(
r

2
+ 2λ2) = 0,(38)

(r + 4λ2)ξ(λ) = 0,(39)

(r + 2λ2 + 4λa)σ(e) = 0,(40)

r + 2λ2 + 4λa = 0,(41)

ξ(λ)σ(φe) = 0,(42)

σ(φe) = 0,(43)

rσ(φe) = 0,(44)

λ(r + 2λ2 − 4λa)(λ+ 2a) = 0,(45)

(r + 2λ2 − 4λa)σ(φe) = 0,(46)

λ(λ+ 2a)σ(e) = 0,(47)

ξ(λ) = 0,(48)

(r − 2λ2 − 4λa)ξ(λ) = 0,(49)

(r − 2λ2 − 4λa)σ(φe) = 0,(50)

λ(r + 2λ2 + 4λa)σ(λ− 2a) = 0,(51)

λ(λ+ 2a)σ(e) = 0,(52)

ξ(λ)σ(φe) = 0,(53)

λ2ξ(λ) = 0,(54)

λ3(λ+ 2a) = 0,(55)

λ(λ− 2a) = 0,(56)

λ(λ− 2a)σ(φe) = 0.(57)
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Proof. From (10)-(18), after simplification we obtain the following equations:

(Q ·R)(e, φe)e =
1

2
(3r + 8λ2 − 8λa)σ(φe)ξ − 2σ(e)σ(φe)e

− 2σ(e)ξ(λ)ξ + 2σ(e)2φe+ (
3r

2
+ 3λ2

− 2λa)(
r

2
+ 2λ2)φe− 1

2
(r + 4λ2)ξ(λ)e,(58)

(Q ·R)(e, φe)φe = − (r + 2λ2 + 4λa)σ(e)ξ + 2σ(e)σ(φe)φe

− (r + 2λ2 + 4λa)e+ (r + 4λ2)ξ(λ)φe

+ 2ξ(λ)σ(φe)ξ − σ(φe)2e,(59)

(Q ·R)(e, φe)ξ = −rσ(φe)e,(60)

(Q ·R)(e, ξ)e = λ(−r − 2λ2 + 4λa)(λ+ 2a)ξ + (r + 2λ2

− 4λa)σ(φe)φe+ 2λ(λ+ 2a)σ(e)e

− 2σ(φe)ξ(λ)e+ 2ξ(λ)2ξ − 2ξ(λ)σ(e)φe,(61)

(Q ·R)(e, ξ)φe = (
r

2
− 2λa− λ2)ξ(λ)ξ + (λ2 + 2λa

− r

2
)σ(φe)e− 1

2
(r + 2λ2 + 4λa)λ(λ− 2a)ξ

+
1

2
(r + 2λ2 + 4λa)σ(e)e,(62)

(Q ·R)(e, ξ)ξ = − 2λ(λ+ 2a)σ(e)ξ + 2ξ(λ)σ(φe)ξ + 4λ2ξ(λ)φe

− 4λ3(λ+ 2a)e− 2σ(φe)2e+ 2σ(e)σ(φe)e,(63)

(Q ·R)(φe, ξ)e = r[ξ(λ)ξ − σ(e)φe],(64)

(Q ·R)(φe, ξ)φe = (r + 2λ2 + 4λa)σ(e)e− λ(r + 2λ2 + 4λa)(λ

− 2a)ξ + 2λ(λ− 2a)σ(φe)φe− 2ξ(λ)σ(e)φe

+ 2ξ(λ)2ξ − 2ξ(λ)σ(φe)e,(65)

(Q ·R)(φe, ξ)ξ = 2ξ(λ)σ(e)ξ − 2λ(λ− 2a)σ(φe)ξ + 4λ2ξ(λ)e

− 4λ3(λ− 2a)φe− 2σ(e)2φe+ 2σ(e)σ(φe)e.(66) �

Now if the manifold satisfies the curvature property Q ·R = 0, then the l.h.s
of the equations (58)-(66) vanish. Then the equations of Lemma 5.1 follows
directly from the equations (58)-(66), by the hypothesis that {e, φe, ξ} is a
basis. Conversely, if the equations (34)-(57) hold, then it is clear to state that
the manifold satisfies the curvature property Q ·R = 0.
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Proof of Proposition 5.1. For a coKähler 3-manifold, it is well known that the
Ricci operator is given by

Q =
r

2
(id− η ⊗ ξ).

This implies directly that a coKähler 3-manifold satisfies Q · R = 0. Then to
complete the proof, we are remains to prove that an almost coKähler 3-manifold
satisfying Q · R = 0 is coKähler. For this, let us assume that a non-coKähler
almost coKähler 3-manifold M satisfies Q · R = 0. In this regard from (55)
and (56) we get a = 0. Then from (56) we have λ = 0, which contradicts our
assumption, that is, M is cokähler. �

6. Proof of the main Theorem

In Proposition 4.1 we prove that an almost coKähler 3-manifold is coKähler
if and only if R ·h = 0 and in Proposition 5.1 we prove that an almost coKähler
3-manifold is coKähler if and only if Q ·R = 0. In view of Proposition 4.1 and
Proposition 5.1 we have our main Theorem 1.1.

Remark 6.1. Observe that the conditions of Theorem 1.1 are equivalent to “M
is semisymmetric” (Wang [16]) and to “M is φ-semisymmetric” (Goldberg and
Yano [6]).
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