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QUATERNIONICALLY PROJECTIVE
CORRESPONDENCE ON AN ALMOST
QUATERNIONIC STRUCTURE

U-HANG K1, JIN SuK PAK AND DAE WON YOON

ABSTRACT. In the present paper, we introduce the notions of quater-
nionically planar curves and quaternionically projective transforma-
tions to the case of almost quaternionic manifold with symmetric
affine connection. Also, we obtain an invariant tensor field under the
quaternionically projective transformation, and show that a quater-
nionic Kihlerian manifold with such a vanishing tensor field is of
constant Q-sectional curvature.

1. Introduction

In an Hermitian manifold, Otsuki and Tashiro ([4]) has studied the
holomorphically projective change of the Riemannian connection, i.e.
a change which preserves the system of holomorphically planar curves,
and has obtained interesting results. In an almost complex manifold,
Tashiro ([5]) has also studied such a change of a symmetric affine con-
nection with respect to which the almost complex structure is covariant
constant. He introduced the holomorphically projective curvature ten-
sor which is invariant under holomorphically projective changes of the
connection and has characterized the holomorphically projective flat-
ness of the connection by the vanishing of its holomorphically projective
correspondences of Kihlerian manifolds.

In the present paper, generalizing those situations, we shall intro-
duce the notions of quaternionically planar curves and quaternionically
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projective correspondence to the case of almost quaternionic manifold
with symmetric affine connection. Next, a tensor invariant such a cor-
respondence will be obtained. Finally, in a metric case we shall obtain
the tensor of constant ¢)-sectional curvature.

ACKNOWLEDGEMENT. The authors would like to express their ap-
preciation to Professor Shigeru Ishihara for his valuable suggestion and
encouragement to develop this paper.

2. Almost quaternionic manifolds

Let M be a differentiable manifold of dimension n and assume that
there is a subbundle V' of the tensor bundle of type (1,1) over M such
that V satisfies the following condition:

(a) In any coordinate neighborhood U of M, there is a local basis
{F,G, H} of the bundle V', where F,G and H are tensor fields of type
(1,1) in U, and satisfy

(2.1) F2 = 1, G? =1, H? =],
GH=-HG=F, HF=-FH=G, FG=-GF=H,

I being the identity tensor field of type (1,1) in M. Such a local basis
{F,G,H} of the bundle V is said to be canonical in U. Thus the
bundle V' is 3-dimensional as a vector bundle. Such a bundle V is
called an almost quaternionic structure and the pair (M, V) an almost
quaternionic manifold. An almost quaternionic manifold is orientable
and of dimension n = 4m(m > 1) (See (2], for example).

For an almost quaternionic manifold (M, V), let {F,G,H} and {F’,
G’, H'} be canonical local basis of V in U and in another coordinate
neighborhood U’ of M, respectively. Then we have in U N U’

FI = 311F + 812G -+ 313H,
(2.2) G = 801 F + 590G + sosH,
H' = 531 F + 535G + s33H,

where Sy = (s48) € SO(3), (8,7 = 1,2,3), because {F,G,H} and
{F',G', H'} satisfy (2.1). Thus, if we put in U

(2.3) A=F®F+G®G+H®H,
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then, using (2.2), we easily see that A determines in M a global tensor
field of type (2,2), which will be also denoted by A.

Next, let there be given an almost quaternionic structure V in a
Riemannian manifold (M, g) and assume that, for any canonical local
basis {F,G,H} of V, all of F, G, and H are almost Hermitian with
respect to g. Moreover, we suppose that the set (M, g, V') satisfies the
following condition:

(b) If ¢ is a cross-section of the bundle V', the Vx¢ is also a cross-
section of V for any vector field X in M, where V denotes the Rie-
mannian connection of the Riemannian manifold (M, g).

Such a set (M, g, V) is called a quaternionic Kdhlerian manifold and
the set (g,V) a quaternionic Kéhlerian structure in M. The condition
(b) is equivalent to the following condition:

(b') For a canonical local basis {F,G,H} of V in U,

VxF = r(X)G -q(X)H,
(2.4) VxG = —r(X)F +p(X)H,
VxH = q(X)F - p(X)G

for any vector field X in M, where p, q and r are certain local 1-forms
in U. Thus, using (2.4), we easily find

(2.5) VA =0.

Here, we can easily verify that the condition (2.5) is equivalent to the
condition (b’). Using the Ricei formula, from (2.4) we have

Kijt"Fi* — K F* = Ci;Gi" — Bi;Hi",
(2.6)

Kiji"Git — Kiji® G = —Cy; Fi + A H",

Kijt"H* — Kiji* H* = — By Fi* — AGiP,

Ky;;" being the components of curvature tensor of the quaternionic
Kahlerian manifold, and A, B, C being defined by

(2.7) A=dp+qgAr, B=dg+rAp, C=dr+qAp,
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where A;;, Bj;, and Cj; are all skew- symmetric,
1 j i 1 j i 1 j i
(28) A= —2-Aj1;d.’B Adx s B = EBszI Adx , C= *2-Cj1'd.’12 Adzt.

Thus A, B, and C are local 2-forms defined in U. Transvecting the
three equations of (2.6) respectively with Fry = F'gtu, Ghu = Grlgtu
and Hp, = Hp'Gy, and changing indices, we find respectively

—KyjtsFi'Fy® + Kijin = CrjHin + Bi;iGin,
(2.9) —KijtsGi*Gr® + Kyjin = AxjFin + CijHin,
—KyjisH;*Hps + Kijin = BijGin + Ak Fin,

where K"jih = Kiji®gsn. Transvecting the second equation of (2.9)
with Fi* = g*sF.P we have

~KinisGit G Fh + Kijin F™* = 4m Ay,
from which it follows that
Ap; = LKk..hFih
7T om T ’

dimM = 4m. Similarly, we obtain
(2.10)

Akj = 5 Krjink’ ", Bij = %Kkﬁh(}' ", Chj= 5 KkinH ~,
Next, using (2.10) we have

1 1
KisnF* = E(Kktsh — Kiun)F*® = §(Kktsh, + Koktn) F**

1
= _§KkhtsFts = —m Agp,

where we have used the identity Kgjin + Kjikn + Kixjn = 0.
Similarly, we find

(2.11) Kitsh F*® = —m Agn, KitshG* = —m Bih,

KitsnHY = —m Chp.
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On the other hand because of (2.11), transvecting (2.9) with g7 gives
Kip = ~mAg Fr® — BeoGr® — CroHp*

where Kip = Kkjihgj ¢ are the components of the Ricci tensor K of
(M, g,V). Similarly we obtain

Kin = —mAgFp° — BrsGr® — CrsHp®,
Kih = —Ags Fp® —mBjsGr® — Crs Hp?,
Kyp = —AgsFr® — BisGp® — mCyHp?,

from which, it follows that for m > 1,

(2.12)
Ky = ——(m + 2)Ak3Fh3, Ky = —(m + 2)BksGhs,
Kin = —(m + 2)Cr.Hy®,

and for m =1,
(2.13) Kip = —ApoFr® — Br,Gr® — Crs Hp®.
We find from (2.12) that if m > 1, then

1

.14 Agp = K # = K 8
(2.14) = ksFh’®, Brih o ksGr®,
1
= ——K . H°.
Ckh g o ks
Substituting (2.14) in (2.9) we have for m > 1,
s 1
—Kyjts Fi' Fr® + Kijin = o 2Kkt(Gthih + H;*Hip),
(2.15)
1
—KijtsGi'Gr® + Kijin = oy 2Kkt(Hthih + F;'Fy),
1
—Kijes Hi' Hy® + Kijin = Kii(Fi'Fin + G 1*Gin).

m+ 2
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Since Ag;, Bx; and Cy; are all skew - symmetric, using (2.14) we find,
form > 1,

(2.16) KtsttFjs = Ktsthst = KtsHktHjs = Ki;j.

It is well known that any quaternionic Kéhlerian manifold (M, g) is
an Einstein space when dimM > 8, i.e., that the Ricci tensor Kj; of
(M, g) has the form

k

2. ;= —

9ji,
k being the scalar curvature of (M, g), which is a constant if M is
connected, when dimM = 4m (See [1], [2]).

3. @-projective transformations

Let M be a differentiable manifold of dimension n with an almost
quaternionic structure. Let M be endowed with a symmetric affine
connection F;;. We now introduce the curves z = z*(t) satisfying the
differential equations

(3.1)
d?zh  _, dod dot dz" p dzt
2z Thig g = W5 HAOR

dz? dzt

X patedl R

+7(t)G; 7 + 7(¢)H; e

We call such a curve a quaternionically planar curve. Given two sym-
metric affine connections I’j’; and I’ ﬁ, we suppose that they have all
quaternionically planar curves in common. Then we say these two
symmetric affine connections are Q-projectively related to each other.
Let 1”}; and f‘ﬁ- are connections in coordinate neighborhood U and U,
and V and V are covariant differentiations with respect to Fﬁ and f‘}’;,
respectively. We suppose that I_’ﬁ are also satisfying (3.1) and VA = 0.
We have put

(3.2) ti» =TI — I}
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From (3.1), we obtain
(3.3) tiiy'y' = ay” + bE;"y + cGty + dH My

for any vector ¥%,a,b,c, and d being functions of y?. On the other
hand, from (2.5) it follows

(34) tis R AL + " ARE = t;° AR 4+ 11,0 AS)

js»

where A5} = F*F* + G;*G;* + H;*H;*. Using (3.3), we can easily
obtain the relations

ti iy = ayye, G Eluy’yt = —byTy,
"Gty 'yt =~y Y, i Hely'yt = —dy"yn.

Making use of these relations, we can eliminate a,b,c and d in (3.3)
and get

(3.5) tiwp ¥ Y'Y Y =0,
where
tji'rph = tjihgrp - tjz'r‘s;)l + tjist'erh + tjisGerph + tjisHerphv
tji'r = jisgsr-

Since (3.5) holds for arbitrary yt, it follows tjirph + tj,-prh + tjriph +
tjpirh+tjrpih+tjp'rih+ti'rjph+tipj'rh+t'rpjih+tirpjh+tiprjh+trpijh = 07
Transvecting this with ¢"P and taking account of (3.2) and (3.4), we
can obtain

(3.6) It =Tk + A;oF + A} + B;F* + B;F}"

where

1 T 1 8 T 1 38 r 1 S T
Ajzmt]r ’szwﬁtﬂ‘ Fs ,C]=‘—'T—Ltjr Gs ,DJ-:—';tJT Hs .
From (3.4) and (3.6), we can find
(37) Ai = BjFij = CjGij = DjH,;j,

Bi = —A;F?, Ci=-A;Gi, D;=—-A;H/.

Consequently, we have
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THEOREM 1. Let I‘Jl} and I_“j’; be two symmetric affine connections
in an almost quaternionic manifold with VA = 0 and VA = 0. Then

these two connections are Q-projectively related to each other if and
only if

(3.8)
TP =T)+ A6 + A8} — AL FFFP — A FFF®
- ApGiFGh - AG*Gh — AcHAHM — A HFHR
holds for a vector field A;.

Let I";; and I ;2 be two symmetric affine connections satisfying (3.8)
for a vector field A;. Then this correspondence is called a quaternion-
ically projective one, or shortly a Q. P. correspondence.

If we denote by Kj;;" the curvature tensor with respect to I'f;, then,
by a straightforward and rather complicated computation, we obtain

(3.9) I_{kjih = Kkjih + (ij - P; )5:z + Pk,;égL - Pjiéz
— Puo A3} — Pro A + PjoAf: + P A,
where
(3.10) Pri = Vi A; — AiAy + A, A AL
By contraction over h and k in (3.9), we have
(3.11) K'ji =Kji+ (Pji + Pij) — (n+ 4)Pj; — Pts/l;’:' - Pts/lg
and, multiplying (3.11) by FB/F,%,Gy’G,* and Hy’ H,*, respectively.
We have

(3.12)
Kji — Kpo A3} = Kji — Kpa A% + (n+ 4) Pog A%
— (n+4)Pji + 4(Pji + Pyj).

By the way, we have from (3.11)

_ 1 _ _
Kji = Kji = (n+ 2)Pji + ——{Kji = Kij — Kji + Kij}

¥4
— Py A% — P A%

i3
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and
Pts/ﬁ; = Pts/l;f {Kts — Ko — Kis + Kst}A
Therefore
(3.13)
Kii = Kj; (n+2)P],+ {K], K;j — Kj; + Ki;}
- 2PtsA§": - {Kts - st - Kts + Kst}At';-
From (3.12),

Rji — Rpo A% = KJ, Kual3 — (n — 9)Pji + (n+ 4) Poa A3

{KJ,, I_{ij —Kji+Kij}.

n + 4
We have
(3.14)
;—i—zkji e 4KbaAb'? = ;{_‘i‘i ji— nLHK aAS‘Z 2(Tn£4i) Ji
2P + o (Rys — Rey — Ko+ Kig).

(n+4y?
On the other hand, using (3.13) and (3.14), we have
(3.15) n(n + 8)Pj; = Mj; — Mj;,
where we have put

n?+9n + 12 n+12 b
(3.16) qu; = n+4 sz' + n+4 Kij - 3KbaAg;'l + Kba.Ai;'

Consequently, substituting (3.15) into (3.9), we have
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THEOREM 2. An invariant tensor field under the Q. P. correspon-
dence is given by
(3.17)
1

Quji" = Kiji" + m{(Mkj — M;)8} + M8 — Mjidp

— Mo A3} — Mo AS] + Mo AL} + My AZRY.
We call it the Q. P. curvature tensor field. We can verify that

(318) ijik =0.

An almost quaternionic manifold with a symmetric affine connection V
with VA = 0 is said to be Q. P. flat if it can be related to a Euclidean
space by a Q. P. correspondence (3.8). The necessary condition to be
Q. P. flat is clearly Qk;;" = 0. Conversely, if ij,-h = 0, then putting

, 1

= )

the curvature tensor K| kjih satisfies the equation

K" = —{(Pi; - Pj)8 + P};8" — Pj;6p — Py A3}
- PI::sA:isJ}'L + P]{SAi? + Pj/sAfl?}
On the other hand, if the space is Q. P. flat under (3.8), then P
satisfies the equation (3.9) in which the left hand side vanishes. Hence

P;; should be equal to the above P]fi. Therefore, in order to prove that

the space with Q;;" = 0 is Q. P. flat, it is sufficient that there exists
a vector field A; such that

(3.19) VA = Pji + AjAi — A A A%

ji?
in the space having the curvature

(3.20)
Kiji" = —{(Prj — Pjx)0F + Pridlt — Pji6f — Pyo ASh
— Puo A3} + Pjs A} + Pis Al ).
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The integrability condition of (3.19) is
—~Kyji"Ap = ViPji — VPei + (Vi A; — V;Ar) A
+ AV A — AV A; — (ViAg) Al
— As(ViA)AS: + (VA) AAT; + Ay(V; A) AR
or, substituting (3.19) and (3.20),
(3.21) ViPji — V;Pes = 0.
Now, if the identity of Bianchi is applied to (3.20), we have
(3.22)
{Vi(Pe; — Pjt) + Vi(Pji — Pyj) + V(P — Pur)}o!
+ (ViPi; — ViPu)8 + (V; Py — ViPyi)é¢ + (ViPji — Vi Pii)6f
~ (ViPis = VicPua) (457 + A3}') — (V3 Pis = ViPyo) (A3 + Afg)
— (ViPjs — V;Peo) (A7 + A7) = 0.
By contraction over h and ¢, we have
(3.23) Vi(Pxj — Pjk) + Vie(Pji — Pij) + Vi (Pik — Put) = 0
and, by contraction over h and j,

(3.24)
(n+2)(ViPr; — ViPii) + Vi(Pik — Pig) — ViPi, + Vi Py

— (ViPis = ViPeo)(Af + A%) — (ViPes = ViPro)(Af + A7) = 0.
Alternating indices ¢, k, [ in (3.24) and considering (3.23), we have
(3-25) (ViPis — ViPr) (AR + AK) + (Vi Pris — Ve Pis) (47 + A7) = 0,
substituting (3.25) into (3.24),

(3.26) (n+2)(ViPri — ViPy) + Vi( P, — Pu) — Vi Pi + Vi Py = 0.
Using (3.23), we have

(3.27) VP — Vi P; =0.

Hence, the integrability condition (3.21) of (3.19) is a consequence of
(3.20). This proves
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THEOREM 3. An almost quaternionic manifold with a symmetric
affine connection V with VA = 0 is Q. P. flat if and only if the Q. P.
curvature tensor field ij,-h vanishes.

In a quaternionic Kahlerian manifold case, we can find from (2.16),
(328) Mji = TLKji.
Therefore, substituting (3.28) into (3.17), we have

(3.29)
Qkjin = Qkji‘gtn
1 .
= Krjin + m{ﬁkigjh — Kjigkn — 2K F;° Fp,
— KksFispjh + stF'isth — 2KkstsGih — KksGisth
+ K;sGi°Grn — 2KysH;°Hin — Kk Hi°Hjp, + Kjs Hi* Hgp }.

If the space is Q. P. flat, i.e., Qkjin = 0, then contracting by ¢7%, we
have

K
(3.30) Ky = —9kh-

Hence K is a constant, and we put

4K

or
+38
(3.32) Kyp = = 7 F9kh-

Then we obtain
(3.33)
Kijin = g{gkhgji — gingki + FenFyi — FipFi; — 2F3Fin + GrnGii
— GjnGri — 2Gk;jGin + HenHji — HjpHy; — 2Hi; Hin},

which is the expression of constant @-sectional curvature. Thus we
have
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THEOREM 4. If a quaternionic Kahlerian manifold is Q. P. flat, then
it is of constant ()-sectional curvature.

Remark On a quaternionic Kahlerian manifold M of dimension n({=
4m > 8, m > 1), the square of the norm of Q;sy, is given by

2(10n + 8)
(n+8)%

with the use of (2.11) and (2.16), where we have put

1Qrjinll* = | Hjinll* — 1Qj:lI?

K
Hyjin = Kijin — nn T8 {9krgjs — Gingrs
+FenFji — FipFri — 2Fi Fin + GenGii
—GnGri — 2GjGin + HinHji — HjnHii — 2Hi; Kin}

and K
QRji = Kji — -, i

By the way, since M is an Einstein space, Q;;=0, and consequently
1Qksinll? = | Hizanl*.
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