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Abstract. In this paper, we prove that on a Kähler spin foliatoin of codimension q = 2n,

any eigenvalue λ of type r (r ∈ {1, · · · , [n+1
2

]}) of the basic Dirac operator Db satisfies the

inequality λ2 ≥ r
4r−2

infM σ∇, where σ∇ is the transversal scalar curvature of F.

1. Introduction

On a Kähler spin foliation (M,F) of codimension q = 2n, any eigenvalue λ of
the basic Dirac operator Db satisfies

(1.1) λ2 ≥


n + 1
4n

inf
M

Kσ if n is odd [6, 7],

n

4(n− 1)
inf
M

Kσ if n is even [4],

where Kσ = σ∇ + |κ|2 with the transversal scalar curvature σ∇ and the mean
curvature form κ of F. In the limiting cases, F is minimal. For the point foliation,
see [9,10]. Since the limiting cases of (1.1) are minimal, the inequalities (1.1) yield
the following:

(1.2) λ2 ≥


n + 1
4n

inf
M

σ∇ if n is odd,

n

4(n− 1)
inf
M

σ∇ if n is even.

In this paper, we give an estimate of the eigenvalues λ of type r of the basic Dirac
operator Db on a Kähler spin foliation. Recently, G. Habib and K. Richardson [5]
proved that the spectrum of the basic Dirac operator does not change with respect
to a change of bundle-like metric. And the existence of a bundle-like metric such
that δBκB = 0 is assured by A. Mason [11]. Hence we have the following.
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Theorem 1.1. Let (M, gM ,F) be a compact Riemannian manifold with a Kähler
spin foliation F of codimension q = 2n and a bundle-like metric gM . Assume that
the transversal scalar curvature is non-negative. Then any eigenvalue λ of type
r(r ∈ {1, · · · , [n+1

2 ]}) of the basic Dirac operator satisfies

(1.3) λ2 ≥ r

4r − 2
inf
M

σ∇.

From (1.3), if n is odd (i.e., r = n+1
2 ) or n is even (i.e., r = n

2 ), then the
inequalities (1.2) are induced.

2. The basic Dirac Operator on a Kähler Spin Foliation

In this section, we summarize some facts on Kähler spin foliations which are
studied in [6,7,12]. Let (M, gM ,F, S(F)) be a Riemannian manifold with a Kähler
spin foliation F of codimension q = 2n, a bundle-like metric gM with respect to F

and a foliated spinor bundle S(F) with a hermitian metric 〈·, ·〉. We recall the exact
sequence

(2.1) 0 → L → TM
π→ Q → 0

determined by the tangent bundle L and the normal bundle Q of F. The metric
gM determines an orthogonal decomposition TM = L⊕L⊥, identifying Q with L⊥

and inducing a metric gQ on Q. Let ∇ be the transversal Levi-Civita connection
on Q = TM/L, which is torsion-free and metric with respect to gQ [8,14]. Let
R∇, ρ∇ and σ∇ be the transversal curvature tensor, transversal Ricci tensor and
transversal scalar curvature with respect to ∇, respectively. The foliation F is said
to be minimal if the mean curvature form κ vanishes. Let Ω∗

B(F) be the space of
all basic forms φ, which are defined by i(X)φ = 0 = i(X)dφ for X ∈ ΓL. Then
L2(Ω∗(M)) is decomposed as [1]

L2(Ω(M)) = L2(ΩB(F))⊕ L2(ΩB(F))⊥.(2.2)

Let P : L2(Ω∗(M)) → L2(Ω∗
B(F)) be the orthogonal projection onto basic forms

[13], which preserves smoothness in the case of Riemannian foliations. For any r-
form ω, we put the basic part of ω as ωB := Pω. Then it is well-known [1] that
κB := Pκ is closed. Let ∆B = dBδB + δBdB be the basic Laplacian, where δB is
the formal adjoint operator of dB = d|Ω∗

B(F).
Let J : Q → Q be an almost complex structure on Q. Then the basic Kähler

form Ω ∈ Ω2
B(F) is defined by

(2.3) Ω(X, Y ) = gQ(X, JY ), ∀X, Y ∈ ΓQ.

By the Clifford multiplication in the fibers of S(F) for any vector field X in Q and
any transversal spinor field Ψ, the Clifford product X ·Ψ, which is also a transversal
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spinor field, is defined. This product has the following properties: for all X, Y ∈ ΓQ
and Φ,Ψ ∈ ΓS(F),

(X · Y + Y ·X)Ψ = −2gQ(X, Y )Ψ,(2.4)
〈X ·Ψ,Φ〉+ 〈Ψ, X · Φ〉 = 0,(2.5)

∇S
Y (X ·Ψ) = (∇Y X) ·Ψ + X · (∇S

Y Ψ),(2.6)

where ∇S is a metric covariant derivation on S(F), i.e., for all X ∈ ΓQ, and all
Ψ,Φ ∈ ΓS(F), it holds

(2.7) X〈Ψ,Φ〉 = 〈∇S
XΨ,Φ〉+ 〈Ψ,∇S

XΦ〉.

If we have no confusion, we use the same notation ∇. Moreover, if we define
the Clifford product ξ · Ψ of a 1-form ξ ∈ Q∗ and a transversal spinor field Ψ as
ξ · Ψ ≡ ξ] · Ψ, where ξ] is a gQ-dual vector of ξ, then any basic r-form can be
considered as an endomorphism of S(F). So Ω is locally expressed as

(2.8) Ω = −1
2

2n∑
a=1

Ea · JEa =
1
2

2n∑
a=1

JEa · Ea,

where {Ea}a=1,··· ,2n is a local orthonormal basic frame in Q. From (2.4), (2.5) and
(2.8), Ω is skew-symmetric and, for any X ∈ ΓQ,

(2.9) X · Ω− Ω ·X = 2JX.

Note that, by the action of the Kähler form, the foliated spinor bundle S(F) splits
into the orthogonal direct sum

(2.10) S(F) = S0 ⊕ S1 ⊕ · · · ⊕ Sn,

where the fiber (Sr)x of the subbundle Sr is just defined as the eigenspace cor-
responding to the eigenvalue iµr, µr = n − 2r(r = 0, · · · , n) of Ωx [7,9]. Let
pr : S(F) → Sr be the projection. Then, for any X ∈ ΓQ,

Xps = ps−1Xps + ps+1Xps,(2.11)
J(X)ps = −ips−1Xps + ips+1Xps (s ∈ N),(2.12)

where ps = 0 for s /∈ {0, 1, · · · , n}. Moreover, the foliated spinor bundle of a Kähler
spin foliation carries an anti-linear map j satisfying the relations [7]:

∇j = 0, [X, j] = 0, [Ω, j] = 0, j2 = (−1)
n(n+1)

2(2.13)
〈jΨ, jΦ〉 = 〈Φ,Ψ〉, jpr = pn−rj.(2.14)

The transversal Dirac operator Dtr acting on sections of the foliated spinor bundle
S(F) is locally given by [2,3]

(2.15) DtrΨ =
∑

a

Ea · ∇Ea
Ψ− 1

2
κ]

B ·Ψ.



336 Seoung Dal Jung

At any point x ∈ M , we choose normal coordinates at this point so that (∇Ea)(x) =
0, for all a. From now on, all the computations in this paper will be made in such
charts. Associated with J, there is a transversally elliptic self-adjoint operator D̃tr

locally defined by [6,7]

(2.16) D̃trΨ =
∑

a

JEa · ∇Ea
Ψ− 1

2
Jκ]

B ·Ψ.

Then we have the following theorem.

Theorem 2.1([7]). Let (M, gM ,F) be a Riemannian manifold with a Kähler spin
foliation F and a bundle-like metric gM such that δBκB = 0. Suppose the basic part
of κ is transversally holomorphic, i.e., ∇JXκ]

B = J∇Xκ]
B for all X ∈ ΓQ. Then,

for any Ψ ∈ S(F),

D2
trΨ = D̃2

trΨ = ∇∗
tr∇trΨ +

1
4
KσΨ,(2.17)

DtrD̃tr + D̃trDtr = 0,(2.18)

where Kσ = |κB |2 + σ∇ and ∇∗
tr∇trΨ = −

∑
a∇Ea∇EaΨ +∇κ]

B
Ψ.

Also, we can easily check the following relations [7]:

(2.19) [Dtr,Ω] = 2D̃tr, [D̃tr,Ω] = −2Dtr, [Dtr, j] = 0, [D̃tr, j] = 0.

Now, we define the subspace ΓBS(F) of basic or holonomy invariant sections of
S(F) by

ΓBS(F) = {Ψ ∈ ΓS(F)| ∇XΨ = 0 for any X ∈ ΓL}.

Let Db = Dtr|ΓBS(F) : ΓBS(F) → ΓBS(F). This operator Db is called the basic
Dirac operator on (smooth) basic sections. It is well-known [2] that Db has a discrete
spectrum. Hence we have the following.

Theorem 2.2([6]). If λ 6= 0 is an eigenvalue of the basic Dirac operator Db on a
Kähler spin foliation F of codimension q = 2n, then the corresponding eigenspace
Eλ(Db) splits into the orthogonal direct sum

(2.20) Eλ(Db) = ⊕n
r=1E

λ
r (Db),

where each eigenspinor Ψ ∈ Eλ
r (Db) has a decomposition Ψ = Ψr−1 + Ψr with

Ψi ∈ ΓBSi = Si ∩ ΓBS(F)(i = r − 1, r) such that the equations

(2.21) DbΨr−1 = λΨr, DbΨr = λΨr−1, ‖Ψr−1‖ = ‖Ψr‖

are satisfied, where � Ψ,Φ �=
∫

M
〈Ψ,Φ〉.

From the second equation in (2.14), we have the relation

(2.22) Eλ
n−r+1(Db) = jEλ

r (Db).
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Hence the decomposition (2.20) in Theorem 2.2 can be written as

Eλ(Db) = ⊕[(n+1)/2]
r=1 {Eλ

r (Db) + jEλ
r (Db)}.(2.23)

Definition 2.3. An eigenvalue λ of the basic Dirac operator is called of type
r (r ∈ {1, · · · , [n+1

2 ]}) if Eλ
r (Db) 6= {0}.

Proposition 2.4([6]). Let F be a Kähler spin foliation. For any Ψ = Ψr−1 +Ψr ∈
Eλ

r (Db), we have

D̃bΨr−1 = iDbΨr−1 = iλΨr, D̃bΨr = −iDbΨr = −iλΨr−1.

Lemma 2.5(6). Let Ψ ∈ Eλ
r (Db) or ΓBSr. For any vector field X ∈ ΓQ, we have

〈JX ·Ψ, D̃bΨ〉 = 〈X ·Ψ, DbΨ〉.

3. Proof of Theorem 1.1

First, we define F : ΓBS(F) → R by

(3.1) F (Ψ) =
∫

M

{α(Ψ) + β(Ψ)},

where

(3.2) α(Ψ) = Re〈κ]
B ·Ψ, DbΨ〉 and β(Ψ) = Re〈Jκ]

B ·Ψ, D̃bΨ〉.

Trivially, if F is minimal, then F (Ψ) = 0 for all spinor fields Ψ ∈ ΓBS(F). From
Lemma 2.5, we have the following.

Proposition 3.1([6]). For any spinor field Ψ ∈ ΓBS(F), we have

F (Ψ) = 2
n∑

r=0

∫
M

α(Ψr) = 2
n∑

r=0

∫
M

β(Ψr) =
∑

r

F (Ψr),

where Ψr = prΨ. In particular, for any spinor field Ψ ∈ Eλ
r (Db), F (Ψr−1) =

−F (Ψr) = −F (jΨr) and so F (Ψ) = 0.

By the Cauchy-Schwartz inequality, we have the following lemma.

Lemma 3.2. Let (M, gM ,F) be a compact Riemannian manifold with a Kähler
spin foliation F and a bundle-like metric gM . Then, for any spinor field Ψ ∈ ΓBSr,
we have

|F (Ψ)| ≤ 2 sup
M

|κB |
( ∫

M

|Ψ|2
)1/2( ∫

M

|DbΨ|2
)1/2

.(3.3)
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The equality holds if and only if κB vanishes.

Proof. From Lemma 2.5 and the Cauchy-Schwartz inequality, we have

|F (Ψ)| = 2|
∫

M

Re〈κ]
B ·Ψ, DbΨ〉|

≤ 2
( ∫

M

|κ]
B ·Ψ|2

)1/2( ∫
M

|DbΨ|2
)1/2

,

which proves (3.3). 2

For any r = 1, · · · , n and vector field X, the transversal Kählerian twistor
operator P r

tr of type r is given [6] by

(3.4) P r
XΨ = ∇XΨ +

1
4r
{π(X) ·DbΨ + Jπ(X) · D̃bΨ}.

By a straightforward calculation, we have that, for any spinor field Ψ ∈ ΓBS(F)

|P r
trΨ|2 = |∇trΨ|2 +

n− 4r

8r2
(|DbΨ|2 + |D̃bΨ|2)−

1
4r
{α(Ψ) + β(Ψ)}

+
1

8r2
{〈DbΨ,ΩD̃bΨ〉+ 〈ΩD̃bΨ, DbΨ〉}.(3.5)

For any spinor field Ψ ∈ ΓBS(F) on a Kähler spin foliation, we have

(3.6) G(Ψ) :=
∫

M

〈DbΨ,ΩD̃bΨ〉 =
∫

M

〈ΩD̃bΨ, DbΨ〉,

i.e., G(Ψ) is real [6].

Lemma 3.3([6]). For any spinor field Ψ = Ψr−1 + Ψr ∈ Eλ
r (Db), we have

G(Ψ) = λ2

∫
M

|Ψ|2 =
∫

M

|DbΨ|2,(3.7)

G(Ψr−1) = −λ2µr

∫
M

|Ψr|2 = −λ2µr

∫
M

|Ψr−1|2,(3.8)

G(jΨr) = λ2µr−1

∫
M

|Ψr−1|2 = λ2µr−1

∫
M

|jΨr|2.(3.9)

From (3.5) and (3.6), we have the following proposition.

Proposition 3.4([6]). On a Kähler spin foliation, we have

4r2

∫
M

|P r
trΨ|2 =

∫
M

{f(r)|DbΨ|2 − r2Kσ|Ψ|2}+ G(Ψ)− rF (Ψ),

where f(r) = 4r2 − 2r + µr.



Eigenvalues of Type r of the Basic Dirac Operator on Kähler Foliations 339

On the other hand, if there exists a spinor field Ψ ∈ KerP r
tr ∩ (KerDb)⊥, then

Ψ ∈ ΓBSr−1 or ΓBSn−r+1 [6]. Hence, from Lemma 3.2, Lemma 3.3 and Proposition
3.4, for any eigenspinor Ψ = Ψr−1 + Ψr ∈ Eλ

r (Db) corresponding to the eigenvalue
λ of Db, we have

4r

∫
M

|P r
trΨr−1|2

= (4r − 2)
∫

M

(λ2 − r

4r − 2
Kσ)|Ψr−1|2 − F (Ψr−1)

≤ (4r − 2)
∫

M

(
λ2 +

supM |κB |
2r − 1

|λ| − r

4r − 2
inf
M

Kσ
)
|Ψr|2

= (4r − 2)
∫

M

(
(|λ|+ supM |κB |

4r − 2
)2 − (

supM |κB |
4r − 2

)2 − r

4r − 2
inf
M

Kσ
)
|Ψr|2.

Hence we have

(|λ|+ supM |κB |
4r − 2

)2 ≥ r

4r − 2
inf
M

Kσ + (
supM |κB |

4r − 2
)2.(3.10)

If we put A = supM |κB |
4r−2 ≥ 0, then we have

λ2 ≥ r

4r − 2
inf
M

Kσ + 2C,(3.11)

where C = A(A−
√

r
4r−2 infM Kσ + A2) ≤ 0. If the equality of (3,10) holds, then

from the equation above, P r
trΨr−1 = 0. Hence κB vanishes [6, Theorem 5.1]. So,

C = 0. Hence any eigenvalue λ of type r(r ∈ {1, · · · , [n+1]
2 }) of the basic Dirac

operator Db satisfies

λ2 ≥ r

4r − 2
inf
M

σ∇.(3.12)

Hence the proof is completed.
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