• Title/Summary/Keyword: Q polynomials

Search Result 206, Processing Time 0.028 seconds

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V.;Kim, T.
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.519-527
    • /
    • 2011
  • Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

A NUMERICAL INVESTIGATION OF THE STRUCTURE OF THE ROOTS OF q-BERNOULLI POLYNOMIALS

  • Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.205-214
    • /
    • 2007
  • Over the years, there has been increasing interest in solving mathematical problems with the aid of computers. The main purpose of this paper is to investigate the roots of the q-Bernoulli polynomials $B_{n,q}{^r}(x)$ for values of the index n by using computer. Finally, we consider the reflection symmetries of the q-Bernoulli polynomials $B_{n,q}{^r}(x)$.

SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.29-38
    • /
    • 2018
  • In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.

SOME PROPERTIES INVOLVING THE HIGHER ORDER q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α, β) VIA THE p-ADIC q-INTEGRAL ON ℤp

  • Seo, Jong Jin;Araci, Serkan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.905-918
    • /
    • 2011
  • The main properties of this paper is to describe the higher order q-Genocchi polynomials with weight $({\alpha},{\beta})$. However, we derive some interesting properties concerning this type of polynomials.

MULTIPLICATION FORMULA AND (w, q)-ALTERNATING POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF THE SECOND KIND

  • CHOI, JI EUN;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.455-467
    • /
    • 2021
  • In this paper, we define twisted q-Euler polynomials of the second kind and explore some properties. We find generating function of twisted q-Euler polynomials of the second kind. Also, we investigate twisted q-Raabe's multiplication formula and (w, q)-alternating power sums of twisted q-Euler polynomials of the second kind. At the end, we define twisted q-Hurwitz's type Euler zeta function of the second kind.

Multiple Weakly Summing Multilinear Mappings and Polynomials

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.501-517
    • /
    • 2007
  • In this paper, we introduce and study a new class containing absolutely summing multilinear mappings and polynomials, which we call multiple weakly summing multilinear mappings and polynomials. We investigate some interesting properties about multiple weakly ($p$; $q_1$, ${\cdots}$, $q_k$)-summing multilinear mappings and polynomials defined on Banach spaces: In particular, we prove a kind of Dvoretzky-Rogers' Theorem and an ideal property for multiple weakly ($p$; $q_1$, ${\cdots}$, $q_k$)-summing multilinear mappings and polynomials. We also prove that the Aron-Berner extensions of multiple weakly ($p$; $q_1$, ${\cdots}$, $q_k$)-summing multilinear mappings and polynomials are also multiple weakly ($p$; $q_1$, ${\cdots}$, $q_k$)-summing.

  • PDF