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SYMMETRIC IDENTITIES FOR DEGENERATE

q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS†

N.S. JUNG, C.S. RYOO∗

Abstract. In this paper, we introduce a degenerate q-poly-Bernoulli num-
bers and polynomials include q-logarithm function. We derive some rela-

tions with this polynomials and the Stirling numbers of second kind and
investigate some symmetric identities using special functions that are in-

volving this polynomials.
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1. Introduction

Throughout this paper, we use the following notations. N = {1, 2, 3, . . . }
denotes the set of natural numbers, N0 = {0, 1, 2, . . . } denotes the set of non-
negative integer, Z denotes the set of integers, and C denotes the set of complex
numbers, respectively.

Also in this paper, we use the notation ;

[x]q =
1− qx

1− q
.

Hence, limq→1[x]q = x.
The classical Bernoulli numbers Bn and polynomials Bn(x) are given by the

generating functions(see[1-14]);

t

et − 1
=

∞∑
n=0

Bn
tn

n!
,

Received May 23, 2017. Revised August 21, 2017. Accepted September 15, 2017.
∗Corresponding author.
†This work was supported by 2017 Hannam University Research Fund

c© 2018 Korean SIGCAM and KSCAM.

29



30 N.S. Jung, C.S. Ryoo

and

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
.

Many researchers have studied about the generalizations of these numbers
and polynomials. And various attempts have been made for the study of the
classical Bernoulli numbers and polynomials. In [1-3], there are definitions and
properties of the poly Bernoulli numbers and their zeta function. In [4], L. Carlitz
introduced the degenerate Bernoulli polynomials Bn(x;λ) that the generating
function is given as below:

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Bn(x;λ)
tn

n
, (λ ∈ C). (1.1)

When x 6= 0, Bn(0|λ) = Bn(λ) is called the degenerate Bernoulli numbers.
The first few are

B0(x;λ) = 1,

B1(x;λ) = x− 1

2
+

1

2
λ,

B2(x;λ) = x2 − x+
1

6
− 1

6
λ2,

B3(x;λ) = x3 − 3

2
x2 +

1

2
x− 3

2
λx+

1

4
λ3 − 1

4
λ, · · · .

Note that (1 + λt)
1
λ tend to et as λ→ 0. It is certain that the Equation(1.1)

reduces to the generating function of the classical Bernoulli polynomials :

lim
λ→0

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Bn(x)
tn

n!
.

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n = Πn
k=1(x− λ(k − 1)) (see[6, 11, 13]).

For n ≥ 0, we have

Bn(x;λ) =

n∑
l=0

(
n

l

)
Bl(λ)(x|λ)n−l, (1.2)

where (x|λ)n = x(x − 1) · · · (x − (n − 1)λ) is generalized falling factorial(see
[4,11,13]).

The polylogarithm function Lik is defined by

Lik(x) =

∞∑
n=1

xn

nk
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for k ∈ Z (see[1,2,3,6,7,8,9]). By using polylogarithm function, Kaneko, in [7],
defined a sequence of rational numbers, which is refered to as poly-Bernoulli
numbers,

Lik(1− e−t)
1− e−t

=

∞∑
n=0

B(k)
n

tn

n!
.

The k-th q-polylogarithm function Lik,q is introduced by

Lik,q(x) =

∞∑
n=1

xn

[n]kq
, (k ∈ Z). (1.3)

For nonnegative integer k, the q-polylogarithm function is represented by a ra-
tional function,

Li−k,q(x) =
1

(1− q)k
k∑
l=0

(−1)l
(
k

l

)
qlx

1− qlx
.

Recently, in [6], we introduced q-poly-Bernoulli polynomials defined by

Lik,q(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n,q(x)

tn

n!
. (1.4)

The Stirling number of the first kind is given by

(x)n =

n∑
m=0

S1(n,m)xm(n ≥ 0)

and
∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
,

where (x)n is falling factorial(see[4,5,6,12]).
The Stirling numbers of the second kind is defined by

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (1.5)

In this paper, we consider the degenerate q-poly-Bernoulli polynomials. We
investigate several properties of the polynomials and derive some relation with
other polynomials. We also find some symmetric identities of degenerate q-poly-
Bernoulli polynomials by using special functions.

2. Degenerate q-poly-Bernoulli polynomials

In this section, we define the generating function of degenerate q-poly-Bernoulli

numbers B
(k)
n,q(λ) and polynomials B

(k)
n,q(x;λ). From the definition, we get some

identities that is similar to the classical Bernoulli polynomials.
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Definition 2.1. For k ∈ Z, n ≥ 0, 0 ≤ q < 1, we define the degenerate
q-poly-Bernoulli polynomials by:

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

B(k)
n,q(x;λ)

tn

n!
(2.1)

where

Lik,q(t) =

∞∑
n=1

tn

[n]kq

is the k-th q-polylogarithm function.

When x = 0, B
(k)
n,q(λ) = B

(k)
n,q(0;λ) are called the degenerate q-poly-Bernoulli

numbers. Note that limq→1[n]q = n, and limq→1B
(k)
n,q(x;λ) = B

(k)
n (x;λ).

It is trivial that the Equation(2.1) is reduced to the q-poly-Bernoulli polyno-
mials which is introduced in Equation(1.4),

lim
λ→0

B(k)
n,q(x;λ) = B(k)

n,q(x).

From the Equation(2.1), we get the relation between the degenerate q-poly-
Bernoulli numbers and the degenerate q-poly-Bernoulli polynomials.

Theorem 2.2. Let n ≥ 0, k ∈ Z, 0 ≤ q < 1. We have

B(k)
n,q(x;λ) =

n∑
l=0

(
n

l

)
B

(k)
l,q (λ)(x|λ)n−l. (2.2)

where (x|λ)n−l is the generalized falling factorial.

Proof. For n ≥ 0, k ∈ Z, 0 ≤ q < 1, we can derive the following result:

∞∑
n=0

B(k)
n,q(x;λ)

tn

n!
=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
B

(k)
l,q (λ)(x|λ)n−l

)
tn

n!
.

Hence, we get

B(k)
n,q(x;λ) =

n∑
l=0

(
n

l

)
B

(k)
l,q (λ)(x|λ)n−l.

�

Replacing x by x+ y in the Equation(2.2), we have an addition theorem.

Theorem 2.3. For n ≥ 0, k ∈ Z, 0 ≤ q < 1, we obtain

B(k)
n,q(x+ y;λ) =

n∑
l=0

(
n

l

)
B

(k)
l,q (x;λ)(y|λ)n−l.
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Proof. Let n ≥ 0, k ∈ Z, 0 ≤ q < 1. Then we obtain

∞∑
n=0

B(k)
n,q(x+ y;λ)

tn

n!
=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+y
λ

=

∞∑
n=0

n∑
l=0

(
n

l

)
B

(k)
l,q (x;λ)(y|λ)n−l

tn

n!
.

Thus, we get the addition theorem as below;

B(k)
n,q(x+ y;λ) =

n∑
l=0

(
n

l

)
B

(k)
l,q (x;λ)(y|λ)n−l.

�

In the Equation(1.4), the definition of q-polylogarithm function Lik,q, is rep-
resented by

Lik,q(1− e−t) =

∞∑
l=1

(1− e−t)l

[l]kq

=

∞∑
n=1

(−1)l
(e−t − 1)l

[l]kq

=

∞∑
n=1

n∑
l=1

(−1)l+n

[l]kq
l!S2(n, l)

tn

n!
.

From above result, we get

1

t
Lik,q(1− e−t) =

∞∑
n=0

n+1∑
l=1

(−1)l+n+1

[l]kq
l!
S2(n+ 1, l)

n+ 1

tn

n!
. (2.3)

Using the Equation(2.3), we obtain next theorem.

Theorem 2.4. For n ≥ 0, k ∈ Z, we have

B(k)
n,q(x;λ) =

n∑
i=0

(
n

i

) i+1∑
l=1

(−1)l+i+1l!S2(i+ 1, l)

[l]kq (i+ 1)
Bn−i,q(x;λ).
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Proof. Let n ≥ 0, k ∈ Z, 0 ≤ q < 1. By the relation between the q-polylogarithm
function and stirling numbers, we get

∞∑
n=0

B(k)
n,q(x;λ)

tn

n!
=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ

=
Lik,q(1− e−t)

t

(
t(1 + λt)

x
λ

(1 + λt)
1
λ − 1

)

=

∞∑
n=0

n+1∑
l=1

(−1)l+n+1

[l]kq
l!
S2(n+ 1, l)

n+ 1

tn

n!

∞∑
n=0

Bn,q(x;λ)
tn

n!

=

∞∑
n=0

n∑
i=0

(
n

i

) i+1∑
l=1

(−1)l+i+1l!S2(i+ 1, l)

[l]kq (i+ 1)
Bn−i,q(x;λ)

tn

n!
.

Therefore, we get

B(k)
n,q(x;λ) =

n∑
i=0

(
n

i

) i+1∑
l=1

(−1)l+i+1l!S2(i+ 1, l)

[l]kq (i+ 1)
Bn−i,q(x;λ).

�

From the definition of degenerate q-poly-Bernoulli polynomials, a recurrence
formula is derived as the following theorem.

Theorem 2.5. For n ≥ 1, k ∈ Z, 0 ≤ q < 1, we get

B(k)
n,q(x+ 1;λ)−B(k)

n,q(x;λ)

=

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
(x|λ)n−r.

Proof. Let n ≥ 1, k ∈ Z, 0 ≤ q < 1. From the Definition 2.1, we have

∞∑
n=0

B(k)
n,q(x+ 1;λ)

tn

n!
−
∞∑
n=0

B(k)
n,q(x;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+1
λ − Lik,q(1− e−t)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=

∞∑
l=0

(1− e−t)l+1

[l + 1]kq
(1 + λt)

x
λ

=

∞∑
n=0

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
(x|λ)n−r

tn

n!
.
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Therefore, the formula is appeared as follows;

B(k)
n,q(x+ 1;λ)−B(k)

n,q(x;λ)

=

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
(x|λ)n−r.

�

3. Symmetric identities for the degenerate q-poly-Bernoulli
polynomials

In this section, we consider some generating functions and investigate general
symmetric identities for the degenerate q-poly-Bernoulli polynomials by given
special functions.

Theorem 3.1. For x ∈ R and n ≥ 0, a, b > 0(a 6= b), we have the following
identity;

n∑
m=0

(
n

m

)
an−mbmB

(k)
n−m,q

(
bx;

λ

a

)
B(k)
m,q

(
ax;

λ

b

)

=

n∑
m=0

(
n

m

)
ambn−mB(k)

m,q

(
bx;

λ

a

)
B

(k)
n−m,q

(
ax;

λ

b

)
.

Proof. For x ∈ R and n ≥ 0, a, b > 0(a 6= b), We consider the generating
function,

F (t) =

(
Lik,q(1− e−at)Lik,q(1− e−bt)
((1 + λt)

a
λ − 1)((1 + λt)

a
λ − 1)

)
(1 + λt)

2abx
λ .

The generating function, F (t), is written by

F (t) =

(
Lik,q(1− e−at)Lik,q(1− e−bt)
((1 + λt)

a
λ − 1)((1 + λt)

a
λ − 1)

)
(1 + λt)

2abx
λ

=

∞∑
n=0

B(k)
n,q

(
bx;

λ

a

)
(at)n

n!

∞∑
m=0

B(k)
n,q

(
ax;

λ

b

)
(bt)m

m!

=

∞∑
n=0

n∑
m=0

(
n

m

)
an−mbmB

(k)
n−m,q

(
bx;

λ

a

)
B(k)
m,q

(
ax;

λ

b

)
tn

n!
.

(3.1)

Similarly, we can get

F (t) =

∞∑
n=0

n∑
m=0

(
n

m

)
ambn−mB(k)

m,q

(
bx;

λ

a

)
B

(k)
n−m,q

(
ax;

λ

b

)
tn

n!
. (3.2)

From Equation(3.1) and (3.2), we can easily get the above result. �

By substituting b = 1, we obtain next corollary.
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Corollary 3.2. For a > 0, x ∈ R and n ≥ 0, we have

n∑
m=0

(
n

m

)
an−mB

(k)
n−m,q

(
x;
λ

a

)
B(k)
m,q (ax;λ)

=

n∑
m=0

(
n

m

)
amB

(k)
n−m,q (ax;λ)B(k)

m,q

(
x;
λ

a

)
.

In [14], a generalized factorial sum σk(n;λ) is introduced by

(1 + λt)
(n+1)
λ − 1

(1 + λt)
1
λ − 1

=

∞∑
k=0

σk(n;λ)
tk

k!
(3.3).

Using the generalized factorial sum, we get a symmetric relation of degenerate
q-poly-Bernoulli polynomials.

Theorem 3.3. For x, y ∈ R, n ≥ 0, a, b > 0 and a 6= b, we have

n∑
m=0

(
n

m

)
an−mbm−1Bm

(
ax;

λ

b

)
σn−m

(
b− 1;

λ

a

)

=

n∑
m=0

(
n

m

)
am−1bn−mBm

(
bx;

λ

a

)
σn−m

(
a− 1;

λ

b

)
Proof. Let x, y ∈ R, n ≥ 0, a, b > 0 and a 6= b.

We consider the generating function:

F (t) =
tLik,q(1− e−at)Lik,q(1− e−bt)((1 + λt)

ab
λ − 1)(1 + λt)

abx
λ

((1 + λt)
a
λ − 1)2((1 + λt)

b
λ − 1)2

.

The Equation follows as below

F (t) =

∞∑
n=0

B(k)
n,q

(
λ

a

)
(at)n

n!

∞∑
n=0

B(k)
n,q

(
λ

b

)
(bt)n

n!

×
∞∑
n=0

σn

(
b− 1;

λ

a

)
(at)n

n!
b−1

∞∑
n=0

Bn

(
ax,

λ

b

)
(bt)n

n!

=

∞∑
n=0

B(k)
n,q

(
λ

a

)
(at)n

n!

∞∑
n=0

B(k)
n,q

(
λ

b

)
(bt)n

n!

×
∞∑
n=0

n∑
m=0

(
n

m

)
an−mbm−1Bn

(
ax,

λ

b

)
σn

(
b− 1;

λ

a

)
tn

n!
.

(3.4)
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In similar method, we have

F (t) =

∞∑
n=0

B(k)
n,q

(
λ

a

)
(at)n

n!

∞∑
n=0

B(k)
n,q

(
λ

b

)
(bt)n

n!

×
∞∑
n=0

σn

(
a− 1;

λ

b

)
(bt)n

n!
a−1

∞∑
n=0

Bn

(
bx,

λ

a

)
(at)n

n!

=

∞∑
n=0

B(k)
n,q

(
λ

a

)
(at)n

n!

∞∑
n=0

B(k)
n,q

(
λ

b

)
(bt)n

n!

×
∞∑
n=0

n∑
m=0

(
n

m

)
am−1bn−mBm

(
bx,

λ

a

)
σn−m

(
a− 1;

λ

b

)
tn

n!
.

(3.5)
Comparing the coefficient of the Equation(3.4) and (3.5), then it gives the

symmetric identity;

n∑
m=0

(
n

m

)
an−mbm−1Bn

(
ax,

λ

b

)
σn

(
b− 1;

λ

a

)

=

n∑
m=0

(
n

m

)
am−1bn−mBm

(
bx,

λ

a

)
σn−m

(
a− 1;

λ

b

)
.

�

References

1. T. Arakawa and M. Kaneko, On Poly-Bernoulli numbers, Comment. Math. Univ. Sanct.
Pauli 48-2 (1999), 159167 .

2. A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu. J.
Math. 65 (2011), 15-24.

3. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q pa-

rameter, Journal of Number Theory 152(2015), 38-54.
4. L. Carlitz, Degenerate stirling Bernoulli and Eulerian numbers, Util. Math 15(1979), 51-88.

5. L. Carlitz, Weighted Stirling numbers of the first kind and second kind - I, Fibonacci Quart
18(1980), 147-162.

6. K.W.Hwang, B.R. Nam, N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and

polynomials, J. Appl. Math. & Informatics 35(2017), 677-621.

7. Waseem A. Khan, A note on degenerate hermite poly-Bernoulli numbers and polynomials,
Journal of Classical Analysis 8(1)(2016), 65-76.

8. M.Kaneko, Poly-Bernoulli numbers, Journal de thorie des nombres de Bordeaux 9(1997),
221-228.

9. Dae San Kim, Taekyun Kim, A note on degenerate poly-Bernoulli numbers and polynomials,

Advances in Difference Equation 2015:258(2015).
10. C.S. Ryoo, A Note on the Zeros of the q-Bernoulli Polynomials, J. Appl. Math. & Infor-

matics 28 (2010), 805-811.

11. C.S. Ryoo, Reflection Symmetries of the q-Genocchi Polynomials, J. Appl. Math. & In-
formatics 28 (2010), 1277-1284.



38 N.S. Jung, C.S. Ryoo

12. C.S. Ryoo, On degenerate numbers and polynomials related to the Stirling numbers and

Bell polynomials, Global Journal of pure and applied mathematics 12(4)(2016), 3407-3413.
13. C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and polyno-

mials and distribution of their zeros, Advances in Difference Equations 2017:213(2017),

1-14.
14. Paul Thomas Young, Degenerate Bernoulli polynomials, generalized factorial sums, and

their applications, Journal of Number Theory 128 (2008), 738-758.

N.S. Jung received Ph.D from Hannam University. Her research interests concentrate on

complex analysis and number theory.

College of Talmage Liberal Arts, Hannam University, Daejeon 34430, Korea.

e-mail: soonjn@gmail.com

C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on

the numerical verification method, scientific computing and p-adic functional analysis.

Department of Mathematics, Hannam University, Daejeon 34430, Korea.
e-mail: ryoocs@hnu.kr




