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MULTIPLICATION FORMULA AND (w, q)-ALTERNATING
POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF

THE SECOND KIND

JI EUN CHOI AND AHYUN KIM∗

Abstract. In this paper, we define twisted q-Euler polynomials of the
second kind and explore some properties. We find generating function
of twisted q-Euler polynomials of the second kind. Also, we investigate
twisted q-Raabe’s multiplication formula and (w, q)-alternating power sums
of twisted q-Euler polynomials of the second kind. At the end, we define
twisted q-Hurwitz’s type Euler zeta function of the second kind.
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1. Introduction

Bernoulli polynomials, Euler polynomials, and Genocchi polynomials are top-
ics that have been studied a lot in mathematics. Furthermore, mathematician
have also researched Bernoulli polynomials of the second kind, Euler polynomi-
als of the second kind, and Genocchi polynomials of the second kind(see [1-18]).
Among them, we will study twisted q-Euler polynomials of the second kind re-
lated to Euler polynomials of the second kind. First, to discuss twisted q-Euler
polynomials of the second kind, which are the topic of this paper, we will in-
troduce precedent researches about the second kind Euler polynomials, second
kind q-Euler polynomials, twisted q-Bernoulli polynomials of the second kind,
and zeta functions.

In [1, 15, 16, 17, 18], the second kind Euler polynomials Ẽn(x) were introduced
and generating function of the second kind Euler polynomials was defined as
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follows:
2et

e2t + 1
=

∞∑
n=0

Ẽn(x)
tn

n!
= 2

∞∑
n=0

(−1)ne(2n+1+x)t.

When x = 0, the numbers Ẽn = Ẽn(0) are called the second kind Euler numbers.
Furthermore, Ryoo [18] discussed second kind q-Euler polynomials Ẽn,q(x). It
is defined as follows:

Ẽn,q(x) =

∫
Zp

[2y + 1 + x]nq dµ−1(y).

We explain notations, which are used in [18]: Zp denotes the ring of p-adic
rational integers, Qp denotes the field of p-adic rational numbers, and Cp denotes
the completion of algebraic closure of Qp. For any natural number n, q-number
is defined as follows:

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

He examined some properties of second kind q-Euler polynomials, using the
fermionic p-adic integral on Zp. Among them, we represent three properties:

Theorem 1.1. Let q ∈ Cp with |q − 1|p < 1. Then

Ẽn,q(x) = 2

∞∑
n=0

(−1)n[2n+ 1 + x]nq .

Theorem 1.2. Let n be a nonnegative integer. Then

Ẽn,q−1(−x) = (−1)nqnẼn,q(x).

Theorem 1.3. Let n be a nonnegative integer. Then

Ẽn,q(2) + Ẽn,q = 2.

According to [4], twisted q-Bernoulli polynomials of the second kind were
defined as following generating function:

∞∑
n=0

B̃n,q,w(x)
tn

n!
= −t

∞∑
n=0

wnqn+xe[2n+1+x]qt,

The numbers B̃n,q,w = B̃n,q,w(0) are called twisted q-Bernoulli numbers of the
second kind when x = 0. Also, [4] investigated another generating function of
twisted q-Bernoulli polynomials of the second kind, which is as follows:

∞∑
n=0

B̃n,q,w(x)
tn

n!
= −te

t
1−q

∞∑
n=0

(
q

1− q

)n
(−1)nq(n+1)x

1− wq2n+1

tn

n!
.

Theorem 1.4. Let n be a nonnegative integer. Then

B̃n,q,w(x) =

n∑
k=0

(
n

k

)
B̃k,q,wq

kx[x]n−k
q . (1.1)
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After Lerch [12] introduced the function ϕ(x, a, s), Lipschitz [11] and Apostol
[3] studied the function ϕ(x, a, s), which is defined as follows(see [10, 5, 14, 6, 13]):

ϕ(a, x, s) =

∞∑
n=0

e2nπia

(n+ x)s
.

In [5, 6, 13, 14], Hurwitz-Lerch zeta function is defined by

Φ(z, s, x) =

∞∑
n=0

zn

(n+ x)s
.

The function ϕ(a, x, s) is related to Hurwitz-Lerch zeta function, which is a
special case of Hurwitz-Lerch zeta function. It is ϕ(a, x, s) = Φ(2πia, s, x). [8]
and [9] stduied Hurwitz’s type Euler zeta function, which is defined as follows:

ζE(s, x) = 2

∞∑
n=0

(−1)n

(n+ x)s
.

Hurwitz’s type Euler zeta function is special case of Hurwitz-Lerch zeta function,
which is ζE(s, x) = 2Φ(−1, s, x). For |z| < 1, Hurwitz-Lerch Euler zeta function
of the second kind is defined as follows:

Φ̃E(z, s, x) =

∞∑
n=0

zn

(2n+ 1 + x)s
.

For Re(s) > 0, Hurwitz’s type Euler zeta function of the second kind is defined
as follows:

ζ̃E(s, x) = 2

∞∑
n=0

(−1)n

(2n+ 1 + x)s
.

Hurwitz’s type Euler zeta function of the second kind is special case of Hurwitz-
Lerch Euler zeta function of the second kind, which is ζ̃E(s, x) = 2Φ̃E(−1, s, x).

In this paper, we study twisted q-Euler polynomials of the second kind. To
do so, we first define q-Euler polynomials of the second kind. Then we explore
some properties using the definition. To be specific, in Section 2, we discuss
twisted q-Euler polynomials of the second kind and explore some properties
including addition formula, property of complement, and multiplication theo-
rem. In Section 3, we find generating function of twisted q-Euler polynomials
of the second kind. We also investigate multiplication formula using twisted q-
Bernoulle polynomials of the second kind and twisted q-Euler polynomials of the
second kind. Furthermore, we define (w, q)-alternating power sums relation of
twisted q-Euler polynomials of the second kind. In Section 4, we define twisted
q-Hurwitz’s type Euler zeta function of the second kind in order to explore re-
lation between twisted q-Euler polynomials of the second kind and twisted-type
q-Hurwitz-Lerch Euler zeta function of the second kind.
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2. Some properties of twisted q-Euler polynomials of the second kind

In this section, we define twisted q-Euler polynomials of the second kind
and examine a few twisted q-Euler polynomials of the second kind. We also
investigate some identities using definition of twisted q-Euler polynomials of the
second kind, including addition formula, property of complement.

Definition 2.1. For 0 < q < 1, we define twisted q-Euler polynomials of the
second kind as the following generating function:

∞∑
n=0

Ẽn,q,w(x)
tn

n!
= [2]q

∞∑
n=0

(−1)nwnqn+xe[2n+1+x]qt,

where w is r-th root of 1 with a positive integer r.

The numbers Ẽn,q,w = Ẽn,q,w(0) are called twisted q-Euler numbers of the
second kind. If w = 1 and q → 1, then twisted q-Euler polynomials of the second
kind are reduced to the second kind Euler polynomials. That is

lim
q→1

Ẽn,q,1(x) = Ẽn(x).

We can see the twisted q-Euler polynomials of the second kind using the
generating function of twisted q-Euler polynomials of the second kind Ẽn,q,w(x)
as follows:

Ẽn,q,w(x) = [2]q

∞∑
m=0

(−1)mwmqn+x[2m+ q + x]nq . (2.1)

Here are a few twisted q-Euler polynomials of the second kind:

Ẽ0,q,w(x) =
[2]qq

x

wq + 1
,

Ẽ1,q,w(x) =
[2]qq

2x+1(wq + 1)− [2]q(wq
3 + 1)

(q − 1)(wq + 1)(wq3 + 1)
,

Ẽ2,q,w(x) =
[2]qq

3x+2(w2q4 + wq3 + wq + 1)− 2[2]qq
2x+1(w2q6 + wq5 + wq + 1))

(q − 1)2(wq + 1)(wq3 + 1)(wq5 + 1)

+
[2]qq

x(w2q8 + wq5 + wq3 + 1)

(q − 1)2(wq + 1)(wq3 + 1)(wq5 + 1)
,

Ẽ3,q,w(x) =
[2]qq

4x+3(w3q9 + w2q8 + w2q6 + w2q4 + wq5 + wq3 + wq + 1)

(q − 1)3(wq + 1)(wq3 + 1)(wq5 + 1)(wq7 + 1)

− 3[2]qq
3x+2(w3q9 + w2q10 + w2q8 + w2q4 + wq7 + wq3 + wq + 1)

(q − 1)3(wq + 1)(wq3 + 1)(wq5 + 1)(wq7 + 1)

+
3[2]qq

2x+1(w3q13 + w2q12 + w2q8 + w2q6 + wq7 + wq5 + wq + 1)

(q − 1)3(wq + 1)(wq3 + 1)(wq5 + 1)(wq7 + 1)

− [2]qq
x(w3q15 + w2q12 + w2q10 + w2q8 + wq7 + wq5 + wq3 + 1)

(q − 1)3(wq + 1)(wq3 + 1)(wq5 + 1)(wq7 + 1)
.
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Theorem 2.2. Let m and n be the nonnegative integers. Then we have

Ẽn,q,w(mx) =

n∑
k=0

(
n

k

)
q(k+1)mxẼk,q,w[mx]

n−k
q .

Proof. By using Definition 2.1, we get
∞∑

n=0

Ẽn.q.w(mx)
tn

n!
= [2]q

∞∑
n=0

(−1)nwnqn+mxe[2n+q+mx]qt

= [2]q

∞∑
n=0

(−1)nwnqn+mxe[2n+1]qq
mxt+[mx]qt

=

(
qmx

∞∑
n=0

Ẽn,q,w
(qmxt)n

n!

)( ∞∑
n=0

[mx]nq
tn

n!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
q(k+1)mxẼk,q,w[mx]

n−k
q

)
tn

n!
.

(2.2)

Therefore, we can compare the coefficients of tn

n! on both sides of the equation
(2.2). This completes the proof. �

Let us put m = 1 in Theorem 2.2. Then we get the following corollary.
Corollary 2.3. For a nonnegative integer n, we obtain

Ẽn,q,w(x) =

n∑
k=0

(
n

k

)
q(k+1)xẼn,q,w[x]

n−k
q .

Theorem 2.4. For a nonnegative integer n, we have

wq−1Ẽn,q,w(x+ 2) + Ẽn,q,w(x) = [2]qq
x[1 + x]nq .

Proof. By utilizing Definition 2.1, we obtain
∞∑

n=0

(
wq−1Ẽn,q,w(x+ 2) + Ẽn,q,w(x)

) tn
n!

= [2]qwq
−1

∞∑
n=0

(−1)nwnqn+x+2e[2n+1+x+2]qt
tn

n!

+ [2]q

∞∑
n=0

(−1)nwnqn+xe[2n+1+x]qt
tn

n!

= [2]qq
xe[1+x]qt

=

∞∑
n=0

(
[2]qq

x[1 + x]nq

) tn
n!
.

Hence, the proof is complete by comparing the coefficients of tn

n! on both sides
of the equation above. �
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Theorem 2.5. For a natural number n, we have
∂

∂x
Ẽn,q,w(x) = log qẼn,q,w(x) +

qx+1 log q

q − 1
nẼn−1,q,wq2(x)

and ∂
∂x Ẽ0,q,w(x) =

[2]qq
x log q

wq+1 .

Proof. By using Definition 2.1, we get

∂

∂x

( ∞∑
n=0

Ẽn,q,w(x)
tn

n!

)

=
∂

∂x

(
[2]q

∞∑
n=0

(−1)nwnqn+xe[2n+1+x]qt
tn

n!

)

= log q

∞∑
n=0

Ẽn,q,w(x)
tn

n!
+

[2]qq
x+1t log q

q − 1

∞∑
n=0

(−1)n(wq2)nqn+xe[2n+1+x]qt

= log q

∞∑
n=0

Ẽn,q,w(x)
tn

n!
+
qx+1 log q

q − 1

∞∑
n=1

nẼn−1,q,wq2(x)
tn

n!
.

Thus, we compare the coefficients of tn

n! on both sides of the equation above.
This completes the proof. �

Theorem 2.6. For a nonnegative integer n, we obtain

Ẽn,q,w(x+ y) =

∞∑
n=0

(
n

k

)
q(k+1)yẼk,q,w(x)[y]

n−k
q .

Proof. From Definition 2.1, we derive
∞∑

n=0

Ẽn,q,w(x+ y)
tn

n!

= [2]q

∞∑
n=0

(−1)nwnqn+x+ye[2n+1+x+y]qt

= [2]q

∞∑
n=0

(−1)nwnqn+x+ye[2n+1+x+y]qq
yte[y]qt

=

( ∞∑
n=0

qyẼn,q,w(x)
(qyt)n

n!

)( ∞∑
n=0

[y]nq
tn

n!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
q(k+1)yẼk,q,w(x)[y]

n−k
q

)
tn

n!
.

(2.3)

Therefore, we compare the coefficients of tn

n! on both sides of the equation (2.3).
This completes the proof. �
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Theorem 2.7. Let l be a natural number and n be a nonnegative integer. Then
we obtain

Ẽn,q,w(x) + (−1)l+1(wq−1)lẼn,q,w(x+ 2l) = [2]q

l−1∑
k=0

(−1)kwkqk+x[2k + 1 + x]nq .

Proof. By using Definition 2.1, we obtain
∞∑

n=0

(
Ẽn,q,w(x) + (−1)l+1(wq−1)lẼn,q,w(x+ 2l)

) tn
n!

= [2]q

∞∑
n=0

(−1)nwnqn+xe[2n+1+x]qt − [2]q(wq
−1)l

∞∑
n=0

(−1)n+lwnqn+2l+xe[2n+1+2l+x]qt

= [2]q

∞∑
n=0

(−1)nwnqn+xe[2n+1+x]qt − [2]q

∞∑
n=0

(−1)n+lwn+lq2n+l+xe[2n+1+2l+x]qt

=

∞∑
n=0

(
[2]q

l−1∑
k=0

(−1)kwkqk+x[2k + 1 + x]nq

)
tn

n!
.

(2.4)

Therefore, the proof is complete from the equation (2.4). �

If w = 1 and q → 1 in Theorem 2.7, then we get the following corollary.

Corollary 2.8. For a natural number l and a nonnegative integer n, we have

Ẽn(x) + (−1)l+1Ẽn(x+ 2l) = 2

l−1∑
k=0

(−1)k(2k + 1 + x)n,

where the polynomials Ẽn(x) are the second kind Euler polynomials.

3. Twisted q-Raabe’s multiplication formula and (w, q)-alternating
power sums of twisted q-Euler polynomials of the second kind

In this section, we explore another generating function of twisted q-Euler
polynomials of the second kind in order to find multiplication formula. Also,
we express twisted q-Euler numbers of the second kind using (w, q)-alternating
power sums.

The following theorem is another generating function of twisted q-Euler poly-
nomials of the second kind.

Theorem 3.1. For 0 < q < 1, we have
∞∑

n=0

Ẽn,q,w(x)
tn

n!
= [2]qe

t
1−q

∞∑
n=0

(
q

1− q

)n
(−1)nq(n+1)x

1 + wq2n+1

tn

n!
.
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Proof. By utilizing Definition 2.1, we get
∞∑

n=0

Ẽn,q,w(x)
tn

n!

= [2]q

∞∑
n=0

(−1)kwkqk+xe[2k+1+x]qt

= [2]qe
t

1−q

∞∑
n=0

(
q

1− q

)n

(−1)nq(x+1)n+x
∞∑
k=0

(−1)kwkqk(2n+1) t
n

n!

= [2]qe
t

1−q

∞∑
n=0

(
q

1− q

)n
(−1)nq(n+1)x

1 + wq2n+1

tn

n!
.

(3.1)

Thus, the proof is complete. �

Theorem 3.2. For a nonnegative integer n, we have

Ẽn,q,w(x) =
[2]q

(1− q)n
n∑

k=0

(
n

k

)
(−1)kqk(x+1)+x

1 + wq2k+1
.

Proof. We omit the proof. Because if we use Theorem 3.1 and Cauchy product,
the proof is complete. �

Theorem 3.3. For a nonnegative integer n, we obtain

(−1)nwqn+1Ẽn,q,w(x) = Ẽn,q−1,w−1(−x).

Proof. By using Definition 3.2, we get

(−1)nwqn+1Ẽn,q,w(x) = (−1)nwqn+1 [2]q
(1− q)n

n∑
k=0

(
n

k

)
(−1)kqk(x+1)+x

q + wq2k+1

=
(−1)n[2]q
(q−1 − 1)n

n∑
k=0

(
n

k

)
(−1)kwq2k+1+k(x−1)+x

1 + wq2k+1

=
[2]q−1

(1− q−1)n

n∑
k=0

(
n

k

)
(−1)kq−k(−x+1)−(−x)

1 + w−1q−(2k+1)

= Ẽn,q−1,w−1(−x).

Therefore, this completes the proof. �

Theorem 3.4. Let m be an odd number and n be a nonnegative integer. Then
we have

Ẽn,q,w(mx) =
[m]nq
[m]−q

m−1∑
k=0

(−1)kwkqm−k−1Ẽn,qmwm

(
x+

2k + 1−m
m

)
.
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Proof. Let m be an odd number. By using Definition 3.1, we get
∞∑

n=0

Ẽn,q,w(mx)
tn

n!

= [2]qe
[m]qt

1−qm

∞∑
n=0

(
q

1− qm

)n
(−1)nq(n+1)mx

1 + (wq2n+1)m

m∑
k=0

(−1)k(wq2n+1)k
([m]qt)

n

n!

=
[2]qm

[m]−q

m−1∑
k=0

(−1)kwkqm−k−1e
[m]qt

1−qm

×
∞∑

n=0

(
qm

1− qm

)n
(−1)nqm(n+1)(x+ 2k+1−m

m )

1 + (wq2n+1)m
([m]qt)

n

n!

=

∞∑
n=0

(
[m]nq
[m]−q

m−1∑
k=0

(−1)kwkqm−k−1Ẽn,qm,wm

(
x+

2k + 1−m
m

))
tn

n!
.

Therefore, the proof is complete by comparing the coefficients of tn

n! on both
sides of the equation above. �

We recall the definition of generating function of twisted q-Bernoulli polyno-
mials of the second kind in introduction as follows(see [4]):

∞∑
n=0

B̃n,q,w(x)
tn

n!
= −te

t
1−q

∞∑
n=0

(
q

1− q

)n
(−1)nq(n+1)x

1− wq2n+1

tn

n!
.

Theorem 3.5. Let m be an even number and n be a natural numbers. Then we
obtain

nẼn−1,q,w(mx) = −[m]n−1
q [2]q

m−1∑
k=0

(−1)kwkqm−k−1B̃n,qm,wm

(
x+

2k + 1−m
m

)
.

Proof. Let m be an even number. We get the following equation in a similar
way to the proof in Theorem 3.4.

∞∑
n=0

Ẽn,q,w(mx)
tn

n!

= [2]q

m−1∑
k=0

(−1)kwkqm−k−1e
[m]qt

1−qm

×
∞∑

n=0

(
qm

1− qm

)n
(−1)nqm(n+1)(x+ 2k+1−m

m )

1− (wq2n+1)m
([m]qt)

n

n!

=

∞∑
n=0

(
−
[m]nq [2]q

[m]qt

m−1∑
k=0

(−1)kwkqm−k−1B̃n,qm,wm

(
x+

2k + 1−m
m

))
tn

n!
.
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If we multiply t to both sides of the equation above, we get
∞∑

n=1

nẼn−1,q,w(mx)
tn

n!

=

∞∑
n=0

(
−[2]q[m]n−1

q

m−1∑
k=0

(−1)kwkqm−k−1B̃n,qm,wm

(
x+

2k + 1−m
m

))
tn

n!
.

(3.2)

Since the polynomial B̃0,q,w(x) = 0, we can compare the coefficients on both
sides of the equation (3.2). Therefore, the proof is complete. �

In order to see the relation between (w, q)-alternating power sums Ai,q,w(m,n)

and twisted q-Euler polynomials of the second kind Ẽn,q,w, we define (w, q)-
alternating power sums as follows:

Ai,q,w(m,n) =

m−1∑
k=0

(−1)kwkqk(2n−2i+1)[2k]iq.

Theorem 3.6. Let m be a natural number and n be a nonnegative integer. Then
we have

Ẽn,q,w =

n∑
l=0

(
n

l

)
[m]lq
[m]−q

ql(1−m)Ẽn,qm,wm

n−l∑
i=0

(
n− l
i

)
[1−m]n−l−i

q Ai,q,w(m,n),

where Ai,q,w(m,n) =
∑m−1

k=0 (−1)kwkqk(2n−2i+1)[2k]iq are (w, q)-alternating power
sums.

Proof. Let us put x = 0 in Theorem 3.4. By using Theorme 2.2, we have

Ẽn,q,w =
[m]nq
[m]−q

m−1∑
k=0

(−1)kwkqm−k−1Ẽn,qmwm

(
2k + 1−m

m

)

=

m−1∑
k=0

(−1)kwkqm−k−1
n∑

l=0

(
n

l

)
[m]lq
[m]−q

q(l+1)(2k+1−m)Ẽn.qm,wm

×
(
[2k]q + q2k[1−m]q

)n−l

=

n∑
l=0

(
n

l

)
[m]lq
[m]−q

ql(1−m)Ẽn,qm,wm

×
n−l∑
i=0

(
n− l
i

)
[1−m]n−l−i

q

m−1∑
k=0

(−1)kwkqk(2n−2i+1)[2k]iq.

(3.3)

Therefore, if we apply (w, q)-alternating power sums to the right-hand side of
the equation (3.3), the proof is complete. �
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Theorem 3.7. For a natural number m and a nonnegative integer n, we have

Ẽn,q,w = − [2]q
n+ 1

n+1∑
l=0

(
n+ 1

l

)
[m]l−1

q q(l−1)(1−m)B̃l,qm,wm

×
n+1−l∑
i=0

(
n+ 1− l

i

)
[1−m]n+1−l−i

q Ai,q,w(m,n),

where Ai,q,w(m,n) =
∑m−1

k=0 (−1)kwkqk(2n−2i+1)[2k]iq are (w, q)-alternating power
sums.

Proof. Let us take x = 0 in Theorem 3.5. By using equation (1.1), we have

Ẽn,q,w = −
[m]nq [2]q

n+ 1

m−1∑
k=0

(−1)kwkqm−k−1B̃n+1,qm,wm

(
2k + 1−m

m

)

= −
[m]n−1

q [2]q

n+ 1

m−1∑
k=0

(−1)kwkqm−k−1

×
n+1∑
l=0

(
n+ 1

l

)
ql(2k+1−m)B̃l,qm,wm

[
2k + 1−m

m

]n+1−l

qm

= − [2]q
n+ 1

n+1∑
l=0

(
n+ 1

l

)
[m]l−1

q q(l−1)(1−m)B̃l,qm,wm

×
n+1−l∑
i=0

(
n+ 1− l

i

)
[1−m]n+1−l−i

q Ai,q,w(m,n).

Therefore, this completes the proof. �

4. Special cases of Zeta functions and their relation with twisted
q-Euler polynomials of the second kind

In this section, we introduce twisted-type q-Hurwitz-Lerch Euler zeta function
of the second kind and define twisted q-Hurwitz’s type Euler zeta function of
the second kind. We investigate relation between the zeta functions and twisted
q-Euler polynomials of the second kind.

Choi and Kim [4] defined twisted-type q-Hurwitz-Lerch Euler zeta function
of the second kind as follows:

Φ̃E,q(w, s, x) =

∞∑
n=0

wnqn+x

[2n+ 1 + x]sq
.

Definition 4.1. For Re(s) > 0, we define twisted q-Hurwitz’s type Euler zeta
function of the second kind as follows:

ζ̃E,q,w(s, x) = [2]q

∞∑
n=0

(−1)nwnqn+x

[2n+ 1 + x]sq
.
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Twisted q-Hurwitz’s type Euler zeta function of the second kind ζ̃E,q,w(s.x)
is special case of twisted-type q-Hurwitz-Lerch Euler zera function of the second
kind Φ̃E,q(w, s, x) as follows:

ζ̃E,q,w(s.x) = [2]qΦ̃E,q(−w, s, x).

If w = 1 and q → 1, then twisted q-Hurwitz’s type Euler zeta function of the
second kind ζ̃E,q,w(s.x) is reduced to zeta function of second kind ζ̃E(s, x). That
is

lim
q→1

ζ̃E,q,1(s, x) = ζ̃E(s, x).

Let us differentiate both sides of Definition 2.1 with respect to t. Then we
get the following identity:

Ẽk,q,w(x) = [2]q

∞∑
n=0

(−1)nwnqn+x[2n+ 1 + x]kq .

We get the following theorem that is relation between twisted q-Euler polyno-
mials of the second kind Ẽk,q,w(x) and twisted-type q-Hurwitz-Lerch Euler zeta
function of the second kind Φ̃E,q(w, s, x).

Theorem 4.2. Let k be a nonnegative integer. Then we obtain

Ẽk,q,w(x) = [2]qΦ̃E,q(−w,−k, x).

Let w = 1 and q → 1 in Theorem 4.2. Then we get the following corollary.

Corollary 4.3. For a nonnegative integer k, we have
Ẽk(x) = 2Φ̃E(−1,−k, x),

where the polynomials Ẽk(x) are the second kind Euler polynomials and the
function Φ̃E(z, s, x) is Hurwitz-Lerch Euler zeta function of the second kind.

The following theorem is relation between twisted q-Euler polynomials of the
second kind Ẽk,q,w(x) and twisted q-Hurwitz’s type Euler zeta function of the
second kind ζ̃E,q,w(s.x).

Theorem 4.4. Let k be a nonnegative integer. Then we have

Ẽk,q,w(x) = ζ̃E,q,w(−k, x).

If we apply w = 1 and q → 1 in Theorem 4.4, then we get the following
corollary.

Corollary 4.5. For a nonnegative integer k, we obtain
Ẽk(x) = ζ̃E(−k, x).

where the polynomials Ẽk(x) are the second kind Euler polynomials and the
function ζ̃E(s, x) is Hurwitz’s type Euler zeta function of the second kind.
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