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A NOTE ON THE WEIGHTED TWISTED DIRICHLET’S

TYPE q-EULER NUMBERS AND POLYNOMIALS

Serkan Aracı, Nurgül Aslan and Jong Jin Seo

Abstract. We in this paper construct Dirichlet’s type twisted q−Euler
numbers and polynomials with weight α. We give some interesting
identities some relations.

1. Introduction, Definitions and Notations

Let p be a fixed odd prime number. Throughout this paper we use the
following notations, by Zp denotes the ring of p-adic rational integers,
Q denotes the field of rational numbers, Qp denotes the field of p-adic
rational numbers, and Cp denotes the completion of algebraic closure
of Qp. Let N be the set of natural numbers and N∗ = N ∪ {0} . The
p-adic absolute value is defined by |p|p = 1

p . In this paper we assume

|q − 1|p < 1 as an indeterminate. In [11− 13] , the fermionic p-adic
q-integral on Zp is defined by Kim

(1.1) I−q (f) =

∫
Zp
f (x) dµ−q (x) = lim

N→∞

1

[pN ]−q

pN−1∑
x=0

(−1)x f (x) qx

[x]q is a q-extension of x which is defined by

[x]q =
1− qx

1− q
, see[1]-[22]

Note that limq→1 [x]q = x.

If we take f1 (x) = f (x+ 1) in (1.1), then we easily see that

(1.2) qI−q (f1) + I−q (f) = [2]q f (0)
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From (1.2), we obtain

(1.3) (−1)n−1 I−q (f) + qnI−q (fn) = [2]q

n−1∑
l=0

(−1)n−1−l qlf (l) .

where fn(x) = f (x+ n) (see [1]-[18]).

In[18], by using p-adic q-integral on Zp, the weighted q-Euler num-

bers E
(α)
n,q and E

(α)
n,q (x) are defined by

E(α)
n,q =

∫
Zp

[x]nqα dµ−q (x) , for n ∈ N∗ and α ∈ Z.

Let Cpn =
{
w | wpn = 1

}
be the cylic group of order pn, and let

Tp = limn→∞Cpn = Cp∞ = ∪n≥0Cpn (see [14],[17]). Note that Tp is
locally constant space.

In[16], Let χ be a Dirichlet’s character with conductor d (= odd) ∈ N
and w ∈ Tp. If we take f(x) = χ (x)wxetx, then we have f(x + d) =

χ (x)wxwdetxetd. From (1.3), we obtain

(1.4)

∫
X
χ (x)wxetxdµ−q (x) =

[2]q
∑d−1

i=0 (−1)d−1−i qiχ (i)wieti

qdwdetd + 1
.

In view of (1.4) we obtain twisted Dirichlet’s type q-Euler numbers
as follows:
(1.5)

F qw,χ(t) =
[2]q

∑d−1
i=0 (−1)

d−1−i
qiχ (i)wieti

qdwdetd + 1
=

∞∑
n=0

Eqn,χ,w
tn

n!
, |t+ log (qw)| < π

d
.

In this paper, we construct Dirichlet’s type twisted q-Euler numbers
and polynomials with weight α. By using fermionic p-adic q-integral
equations on Zp, we investigate some interesting identities and relations
on the Dirichlet’s type twisted q-Euler numbers and polynomials with
weight α. Furthermore, we derive the q-extensions of Dirichlet’s type
q-l-functions with weight α from the Mellin transformation of this gen-
erating function which interpolates the Dirichlet’s type twisted q-Euler
polynomials with weight α.
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2. On the weighted twisted Dirichlet’s type q−Euler
numbers and polynomials

In this section, by using fermionic p-adic q-integral equations on Zp,
some interesting identities and relation on the twisted Dirichlet’s type
q-Euler numbers and polynomials with weight α.

Definition 1. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then the generating function of
twisted Dirichlet’s type q-Euler polynomials with weight α defined by
as follows:

(2.1) F (α) (t, x, q, w | χ) =
∞∑
m=0

Ẽn (α, x, w, q | χ)
tn

n!

where

(2.2) F (α) (t, x, q, w | χ) = [2]q

∞∑
m=0

(−1)m qmwmχ (m) et[x+m]qα .

From (2.1) and (2.2) we obtain,

∞∑
n=0

Ẽn (α,w, q | χ)
tn

n!
=
∞∑
n=0

(
[2]q

∞∑
m=0

(−1)m qmwmχ (m) [x+m]nqα

)
tn

n!

Therefore we obtain the following theorem:

Theorem 1. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then we have

(2.3) Ẽn (α, x, w, q | χ) = [2]q

∞∑
m=0

(−1)m qmwmχ (m) [x+m]nqα

By using (2.3),

Ẽn (α, x, w, q | χ)

= [2]q

∞∑
m=0

d−1∑
l=0

(−1)l+md ql+mdwl+mdχ (l +md) [x+ l +md]
n
qα

=
[2]q

(1− qα)n
d−1∑
l=0

(−1)l qlwlχ (l)

∞∑
m=0

(−1)m
(
q
d
)m (

w
d
)m n∑

k=0

(n
k

)
(−1)k qαk(x+l+md)

=
[2]q

(1− qα)n
d−1∑
l=0

(−1)l qlwlχ (l)
n∑
k=0

(n
k

)
(−1)k qαk(x+l)

∞∑
m=0

(−1)m
(
q
d
)m (

w
d
)m (

q
αkd
)m

=
[2]q

(1− qα)n
d−1∑
l=0

(−1)l qlwlχ (l)

n∑
k=0

(n
k

)
(−1)k qαk(x+l)

qαkdwdqd + 1
.

So, we obtain the following corollary:
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Corollary 1. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then we have

Ẽn (α, x, w, q | χ) = [2]q

∞∑
m=0

(−1)m qmwmχ (m) [x+m]nqα

=
[2]q

(1− qα)n

d−1∑
l=0

(−1)l qlwlχ (l)

n∑
k=0

(
n
k

)
(−1)k qαk(x+l)

qαkdwdqd + 1
.

In (1.1) , we take f(y) = χ (y)wy [x+ y]nqα ,

(2.4)

∫
Zp
χ (y)wy [x+ y]

n
qα dµ−q (y)

=
1

(1− qα)
n

n∑
k=0

(
n

k

)
(−1)

k
qαkx

∫
Zp
χ (y)wyqaykdµ−q (y)

where from (1.3), we easily see that,

(2.5)

∫
Zp
χ (y)wyqyαkdµ−q (y) =

[2]q
∑d−1

l=0 (−1)l qlwlχ (l)

qdqαkdwd + 1

by using (2.4) and (2.5) we obtain

(2.6)

∫
Zp
χ (y)wy [x+ y]nqα dµ−q (y)

=
1

(1− qα)n

n∑
l=0

(
n

k

)
(−1)k qαkx

[2]q
∑d−1

l=0 (−1)l qlwlχ (l)

qdqαkdwd + 1

= Ẽn (α, x, w, q | χ)

From (2.6) above we obtain twisted Dirichlet’s type q-Euler polyno-
mials with weight α witt’s type formula as follows theorem:

Theorem 2. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then we obtain

(2.7) Ẽn (α, x, w, q | χ) =

∫
Zp
χ (y)wy [x+ y]nqα dµ−q (y) .

By (2.2), we obtain functional equation as follows:

F (α) (t, x, q, w | χ) = et[x]qαF (α) (qxt, q, w | χ)
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By using the definition of the generating function F (α) (t, x, q, w | χ) as
follows:
∞∑
n=0

Ẽn (α, x, w, q | χ)
tn

n!
=

( ∞∑
n=0

[x]nqα
tn

n!

)( ∞∑
n=0

qnαxẼn (α,w, q | χ)
tn

n!

)
By using the Cauchy product in the above equation, we have

∞∑
n=0

Ẽn (α, x, w, q | χ)
tn

n!
=
∞∑
n=0

(
n∑
l=0

(
n

l

)
qαlxẼl (α,w, q | χ) [x]n−lqα

)
tn

n!

Comparing the coefficients of tn

n! on the both sides of the above equa-
tion, we arrive at the following theorem:

Theorem 3. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then

(2.8) Ẽn (α, x, w, q | χ) =

n∑
l=0

(
n

l

)
qαxlẼl (α,w, q | χ) [x]n−lqα .

By (2.8), and the umbral calculus convention, we obtain

(2.9) Ẽn (α, x, w, q | χ) =
(
qαxẼ (α,w, q | χ) + [x]qα

)n
with usual convention about replacing

(
Ẽ (α,w, q | χ)

)n
by Ẽn (α,w, q | χ) .

From (1.3) we arrive at the following theorem:

Theorem 4. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. We get

qnẼm (α,w, q | χ) + (−1)
n−1

Ẽm (n, α,w, q | χ) = [2]q

n−1∑
l=0

(−1)
l
qlχ (l)wl [l]

m
qα .

From (1.1), we can easily derive the following (2.10)
(2.10)∫

Zp
χ (y)wy [x+ y]nqα dµ−q (y)

=
[d]nqα

[d]−q

d−1∑
a=0

(−1)a χ (a)waqa
∫
Zp
wdy

[
x+ a

d
+ y

]n
qdα

dµ(−q)d (y)

=
[d]nqα

[d]−q

d−1∑
a=0

(−1)awaqaχ (a)E
(α)

n,qd,wd

(
x+ a

d

)
.

Therefore, by (2.10), we obtain the following theorem:
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Theorem 5. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. We get

Ẽn (α, x, w, q | χ) =
[d]nqα

[d]−q

d−1∑
a=0

(−1)awaqaχ (a)E
(α)

n,qd,wd

(
x+ a

d

)
.

3. Interpolation function of the polynomials Ẽn (α, x, w, q | χ)

In this section, we give interpolation function of the generating func-
tions of twisted Dirichlet’s type q-Euler polynomials with weight α.
For s ∈ C , w ∈ Tp and χ be a Dirichlet’s character with conductor
d(= odd) ∈ N, by applying the Mellin transformation to (2.2), we ob-
tain

lq (x, α,w | s) =
1

Γ (s)

∮
ts−1F (α) (t, x, q, w | χ) dt

= [2]q

∞∑
m=0

(−1)mwmqmχ (m)
1

Γ (s)

∫ ∞
0

ts−1e−t[m+x]qαdt

so we have

lq (s, x, α, w | χ) = [2]q

∞∑
m=0

(−1)m χ (m)wmqm

[m+ x]sqα

We define q−extension Dirichlet’s type q-l-function as follows theo-
rem:

Theorem 6. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. We have

(3.1) lq (s, x, α, w | χ) = [2]q

∞∑
m=0

(−1)m χ (m)wmqm

[m+ x]sqα

for all s ∈ C. We note that lq (s, x, α, w | χ) is analytic function in the
whole complex s-plane.

By subsituting s = −n into (3.1) we easily get

lq (−n, x, α, w | χ) = Ẽn (α, x, w, q | χ) .

we obtain the following theorem:

Theorem 7. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then we define

(3.2) lq (−n, x, α, w | χ) = Ẽn (α, x, w, q | χ)
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lq (s, 0, α, w | χ) = lq (s, α, w | χ) which is the twisted Dirichlet’s type
q-l-function. We now consider the function lq (s, α, w | χ) as follows:

lq (s, α, w | χ) = [2]q

∞∑
m=1

(−1)m χ (m)wmqm

[m]sqα

= [2]q

∞∑
m=1

d−1∑
a=0

(−1)a+dm χ (a+ dm)wa+dmqa+dm

[a+ dm]sqα

= [d]−sqα

d−1∑
a=0

(−1)a χ (a)waqa [2]q

∞∑
m=1

(−1)m
(
wd
)m (

qd
)m[(

a
d +m

)]s
qdα

= [d]−sqα

d−1∑
a=0

(−1)a χ (a)waqaζ
(α)

qd,wd

(
s,
a

d

)
(3.3)

From (3.3), we obtain the following theorem:

Theorem 8. Let χ be a Dirichlet’s character with conductor d (= odd) ∈
N. For each α, n ∈ N∗ and w ∈ Tp. Then we have

(3.4) lq (s, α, w | χ) = [d]−sqα

d−1∑
a=0

(−1)a χ (a)waqaζ
(α)

qd,wd

(
s,
a

d

)
.

where ζ
(α)
q,w (s, x) twisted Hurwitz q-Euler zeta functions.

We now consider the function =(α)
q (s, a, w | F ) as follows:

(3.5) =(α)
q (s, a, w | F ) = [2]q

∑
m≡a(modF )

(−1)mwmqm

[m]sqα

If F odd number then we have

=(α)
q (s, a, w | F ) = [2]q

∑
m≡a(modF )

(−1)mwmqm

[m]sqα

= [2]q

∞∑
m=0

(−1)mF+awmF+aqmF+a

[mF + a]sqα

=
(−1)awaqa

[F ]sqα

∞∑
m=0

(−1)m
(
wF
)m (

qF
)m[

m+ a
F

]s
qαF

=
(−1)awaqa

[F ]sqα
ζ
(α)

qF ,wF

(
s,
a

F

)
(3.6)

From (3.2) and (3.6) we obtain the following theorem:
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Theorem 9. Let χ be a Dirichlet’s character with conductor d(=
odd) ∈ N. For each α, n ∈ N∗ and ∈ Tp. We get

(3.7) =(α)
q (−n, a, w | F ) = (−1)awaqa [F ]nqα Ẽ

(α)

n,wF ,qF

( a
F

)
By (3.4) and (3.7), we obtain the following corollary:

Corollary 2. Let χ be a Dirichlet’s character with conductor d (= odd)
∈ N. For each α, n ∈ N∗ and w ∈ Tp. We get

lq (s, α, w | χ) =
d−1∑
a=0

χ (a)=(α)
q (s, a, w | d)
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