A NOTE ON THE WEIGHTED TWISTED DIRICHLET'S TYPE q-EULER NUMBERS AND POLYNOMIALS

Serkan Araci, Nurgül Aslan and Jong Jin Seo

Abstract

We in this paper construct Dirichlet's type twisted q-Euler numbers and polynomials with weight α. We give some interesting identities some relations.

1. Introduction, Definitions and Notations

Let p be a fixed odd prime number. Throughout this paper we use the following notations, by \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$. The p-adic absolute value is defined by $|p|_{p}=\frac{1}{p}$. In this paper we assume $|q-1|_{p}<1$ as an indeterminate. In $[11-13]$, the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim

$$
\begin{equation*}
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1}(-1)^{x} f(x) q^{x} \tag{1.1}
\end{equation*}
$$

$[x]_{q}$ is a q-extension of x which is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad \operatorname{see}[1]-[22]
$$

Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
If we take $f_{1}(x)=f(x+1)$ in (1.1), then we easily see that

$$
\begin{equation*}
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0) \tag{1.2}
\end{equation*}
$$

Received May 10, 2011. Accepted June 7, 2011.
2000 Mathematics Subject Classification. 05A10, 11B65, 28B99, 11B68, 11B73.
Key words and phrases. Euler numbers and polynomials, q-Euler numbers and polynomials, Twisted q-Euler numbers and polynomials with weight α, Dirihlet's type twisted q-Euler numbers and polynomials with weight α, .

From (1.2), we obtain

$$
\begin{equation*}
(-1)^{n-1} I_{-q}(f)+q^{n} I_{-q}\left(f_{n}\right)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} f(l) . \tag{1.3}
\end{equation*}
$$

where $f_{n}(x)=f(x+n)$ (see [1]-[18]).
In [18], by using p-adic q-integral on \mathbb{Z}_{p}, the weighted q-Euler numbers $E_{n, q}^{(\alpha)}$ and $E_{n, q}^{(\alpha)}(x)$ are defined by

$$
E_{n, q}^{(\alpha)}=\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x), \text { for } n \in \mathbb{N}^{*} \text { and } \alpha \in \mathbb{Z}
$$

Let $C_{p^{n}}=\left\{w \mid w^{p^{n}}=1\right\}$ be the cylic group of order p^{n}, and let $T_{p}=\lim _{n \rightarrow \infty} C_{p^{n}}=C_{p^{\infty}}=\cup_{n \geq 0} C_{p^{n}}$ (see [14],[17]). Note that T_{p} is locally constant space.

In [16], Let χ be a Dirichlet's character with conductor $d(=o d d) \in \mathbb{N}$ and $w \in T_{p}$. If we take $f(x)=\chi(x) w^{x} e^{t x}$, then we have $f(x+d)=$ $\chi(x) w^{x} w^{d} e^{t x} e^{t d}$. From (1.3), we obtain

$$
\begin{equation*}
\int_{X} \chi(x) w^{x} e^{t x} d \mu_{-q}(x)=\frac{[2]_{q} \sum_{i=0}^{d-1}(-1)^{d-1-i} q^{i} \chi(i) w^{i} e^{t i}}{q^{d} w^{d} e^{t d}+1} \tag{1.4}
\end{equation*}
$$

In view of (1.4) we obtain twisted Dirichlet's type q-Euler numbers as follows:
$F_{w, \chi}^{q}(t)=\frac{[2]_{q} \sum_{i=0}^{d-1}(-1)^{d-1-i} q^{i} \chi(i) w^{i} e^{t i}}{q^{d} w^{d} e^{t d}+1}=\sum_{n=0}^{\infty} E_{n, \chi, w}^{q} \frac{t^{n}}{n!},|t+\log (q w)|<\frac{\pi}{d}$.

In this paper, we construct Dirichlet's type twisted q-Euler numbers and polynomials with weight α. By using fermionic p-adic q-integral equations on \mathbb{Z}_{p}, we investigate some interesting identities and relations on the Dirichlet's type twisted q-Euler numbers and polynomials with weight α. Furthermore, we derive the q-extensions of Dirichlet's type q-l-functions with weight α from the Mellin transformation of this generating function which interpolates the Dirichlet's type twisted q-Euler polynomials with weight α.

2. On the weighted twisted Dirichlet's type q-Euler numbers and polynomials

In this section, by using fermionic p-adic q-integral equations on \mathbb{Z}_{p}, some interesting identities and relation on the twisted Dirichlet's type q-Euler numbers and polynomials with weight α.

Definition 1. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then the generating function of twisted Dirichlet's type q-Euler polynomials with weight α defined by as follows:

$$
\begin{equation*}
\mathcal{F}^{(\alpha)}(t, x, q, w \mid \chi)=\sum_{m=0}^{\infty} \widetilde{E}_{n}(\alpha, x, w, q \mid \chi) \frac{t^{n}}{n!} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}^{(\alpha)}(t, x, q, w \mid \chi)=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} w^{m} \chi(m) e^{t[x+m]_{q^{\alpha}}} . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we obtain,
$\sum_{n=0}^{\infty} \widetilde{E}_{n}(\alpha, w, q \mid \chi) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left([2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} w^{m} \chi(m)[x+m]_{q^{\alpha}}^{n}\right) \frac{t^{n}}{n!}$
Therefore we obtain the following theorem:
Theorem 1. Let χ be a Dirichlet's character with conductor $d(=$ odd $) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then we have

$$
\begin{equation*}
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} w^{m} \chi(m)[x+m]_{q^{\alpha}}^{n} \tag{2.3}
\end{equation*}
$$

By using (2.3),

$$
\begin{aligned}
& \widetilde{E}_{n}(\alpha, x, w, q \mid \chi) \\
& =[2]_{q} \sum_{m=0}^{\infty} \sum_{l=0}^{d-1}(-1)^{l+m d} q^{l+m d} w^{l+m d} \chi(l+m d)[x+l+m d]_{q^{\alpha}}^{n} \\
& =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{d-1}(-1)^{l} q^{l} q^{l} w^{l} \chi(l) \sum_{m=0}^{\infty}(-1)^{m}\left(q^{d}\right)^{m}\left(w^{d}\right)^{m} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} q^{\alpha k(x+l+m d)} \\
& =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{d-1}(-1)^{l} q^{l} q^{l} w^{l} \chi(l) \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} q^{\alpha k(x+l)} \sum_{m=0}^{\infty}(-1)^{m}\left(q^{d}\right)^{m}\left(w^{d}\right)^{m}\left(q^{\alpha k d}\right)^{m} \\
& =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{d-1}(-1)^{l} q^{l} q^{l} w^{l} \chi(l) \sum_{k=0}^{n} \frac{\binom{n}{k}(-1)^{k} q^{\alpha k(x+l)}}{q^{\alpha k d} w^{d} q^{d}+1} .
\end{aligned}
$$

So, we obtain the following corollary:

Corollary 1. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then we have

$$
\begin{aligned}
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi) & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} w^{m} \chi(m)[x+m]_{q^{\alpha}}^{n} \\
& =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{d-1}(-1)^{l} q^{l} w^{l} \chi(l) \sum_{k=0}^{n} \frac{\binom{n}{k}(-1)^{k} q^{\alpha k(x+l)}}{q^{\alpha k d} w^{d} q^{d}+1} .
\end{aligned}
$$

In (1.1), we take $f(y)=\chi(y) w^{y}[x+y]_{q^{\alpha}}^{n}$,

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \chi(y) w^{y}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y) \\
& =\frac{1}{\left(1-q^{\alpha}\right)^{n}} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} q^{\alpha k x} \int_{\mathbb{Z}_{p}} \chi(y) w^{y} q^{a y k} d \mu_{-q}(y) \tag{2.4}
\end{align*}
$$

where from (1.3), we easily see that,

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \chi(y) w^{y} q^{y \alpha k} d \mu_{-q}(y)=\frac{[2]_{q} \sum_{l=0}^{d-1}(-1)^{l} q^{l} w^{l} \chi(l)}{q^{d} q^{\alpha k d} w^{d}+1} \tag{2.5}
\end{equation*}
$$

by using (2.4) and (2.5) we obtain

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \chi(y) w^{y}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y) \\
& =\frac{1}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{k}(-1)^{k} q^{\alpha k x} \frac{[2]_{q} \sum_{l=0}^{d-1}(-1)^{l} q^{l} w^{l} \chi(l)}{q^{d} q^{\alpha k d} w^{d}+1} \tag{2.6}\\
& =\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)
\end{align*}
$$

From (2.6) above we obtain twisted Dirichlet's type q-Euler polynomials with weight α witt's type formula as follows theorem:

Theorem 2. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then we obtain

$$
\begin{equation*}
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)=\int_{\mathbb{Z}_{p}} \chi(y) w^{y}\left[x+\left.y\right|_{q^{\alpha}} ^{n} d \mu_{-q}(y) .\right. \tag{2.7}
\end{equation*}
$$

By (2.2), we obtain functional equation as follows:

$$
\mathcal{F}^{(\alpha)}(t, x, q, w \mid \chi)=e^{t[x]_{q^{\alpha}}} \mathcal{F}^{(\alpha)}\left(q^{x} t, q, w \mid \chi\right)
$$

By using the definition of the generating function $\mathcal{F}^{(\alpha)}(t, x, q, w \mid \chi)$ as follows:
$\sum_{n=0}^{\infty} \widetilde{E}_{n}(\alpha, x, w, q \mid \chi) \frac{t^{n}}{n!}=\left(\sum_{n=0}^{\infty}[x]_{q^{\alpha}}^{n} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} q^{n \alpha x} \widetilde{E}_{n}(\alpha, w, q \mid \chi) \frac{t^{n}}{n!}\right)$
By using the Cauchy product in the above equation, we have

$$
\sum_{n=0}^{\infty} \widetilde{E}_{n}(\alpha, x, w, q \mid \chi) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} q^{\alpha l x} \widetilde{E}_{l}(\alpha, w, q \mid \chi)[x]_{q^{\alpha}}^{n-l}\right) \frac{t^{n}}{n!}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on the both sides of the above equation, we arrive at the following theorem:

Theorem 3. Let χ be a Dirichlet's character with conductor $d(=$ odd $) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then

$$
\begin{equation*}
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)=\sum_{l=0}^{n}\binom{n}{l} q^{\alpha x l} \widetilde{E}_{l}(\alpha, w, q \mid \chi)[x]_{q^{\alpha}}^{n-l} \tag{2.8}
\end{equation*}
$$

By (2.8), and the umbral calculus convention, we obtain

$$
\begin{equation*}
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)=\left(q^{\alpha x} \widetilde{E}(\alpha, w, q \mid \chi)+[x]_{q^{\alpha}}\right)^{n} \tag{2.9}
\end{equation*}
$$

with usual convention about replacing $(\widetilde{E}(\alpha, w, q \mid \chi))^{n}$ by $\widetilde{E}_{n}(\alpha, w, q \mid \chi)$.
From (1.3) we arrive at the following theorem:
Theorem 4. Let χ be a Dirichlet's character with conductor $d(=$ odd $) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. We get
$q^{n} \widetilde{E}_{m}(\alpha, w, q \mid \chi)+(-1)^{n-1} \widetilde{E}_{m}(n, \alpha, w, q \mid \chi)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} \chi(l) w^{l}[l]_{q^{\alpha}}^{m}$.
From (1.1), we can easily derive the following (2.10)

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \chi(y) w^{y}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y) \tag{2.10}\\
& =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} \chi(a) w^{a} q^{a} \int_{\mathbb{Z}_{p}} w^{d y}\left[\frac{x+a}{d}+y\right]_{q^{d \alpha}}^{n} d \mu_{(-q)^{d}}(y) \\
& =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} w^{a} q^{a} \chi(a) E_{n, q^{d}, w^{d}}^{(\alpha)}\left(\frac{x+a}{d}\right) .
\end{align*}
$$

Therefore, by (2.10), we obtain the following theorem:

Theorem 5. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. We get

$$
\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)=\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} w^{a} q^{a} \chi(a) E_{n, q^{d}, w^{d}}^{(\alpha)}\left(\frac{x+a}{d}\right)
$$

3. Interpolation function of the polynomials $\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)$

In this section, we give interpolation function of the generating functions of twisted Dirichlet's type q-Euler polynomials with weight α. For $s \in \mathbb{C}, w \in T_{p}$ and χ be a Dirichlet's character with conductor $d(=o d d) \in \mathbb{N}$, by applying the Mellin transformation to (2.2), we obtain

$$
\begin{aligned}
\boldsymbol{l}_{q}(x, \alpha, w \mid s) & =\frac{1}{\Gamma(s)} \oint t^{s-1} \mathcal{F}^{(\alpha)}(t, x, q, w \mid \chi) d t \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} w^{m} q^{m} \chi(m) \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]_{q^{\alpha}}} d t
\end{aligned}
$$

so we have

$$
\boldsymbol{l}^{q}(s, x, \alpha, w \mid \chi)=[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} \chi(m) w^{m} q^{m}}{[m+x]_{q^{\alpha}}^{s}}
$$

We define q-extension Dirichlet's type q-l-function as follows theorem:

Theorem 6. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. We have

$$
\begin{equation*}
\boldsymbol{l}^{q}(s, x, \alpha, w \mid \chi)=[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} \chi(m) w^{m} q^{m}}{[m+x]_{q^{\alpha}}^{s}} \tag{3.1}
\end{equation*}
$$

for all $s \in \mathbb{C}$. We note that $\boldsymbol{l}^{q}(s, x, \alpha, w \mid \chi)$ is analytic function in the whole complex s-plane.

By subsituting $s=-n$ into (3.1) we easily get

$$
\boldsymbol{l}^{q}(-n, x, \alpha, w \mid \chi)=\widetilde{E}_{n}(\alpha, x, w, q \mid \chi)
$$

we obtain the following theorem:
Theorem 7. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then we define

$$
\begin{equation*}
\boldsymbol{l}^{q}(-n, x, \alpha, w \mid \chi)=\widetilde{E}_{n}(\alpha, x, w, q \mid \chi) \tag{3.2}
\end{equation*}
$$

$\boldsymbol{l}^{q}(s, 0, \alpha, w \mid \chi)=\boldsymbol{l}^{q}(s, \alpha, w \mid \chi)$ which is the twisted Dirichlet's type q - l-function. We now consider the function $\boldsymbol{l}^{q}(s, \alpha, w \mid \chi)$ as follows:

$$
\begin{aligned}
\boldsymbol{l}^{q}(s, \alpha, w \mid \chi) & =[2]_{q} \sum_{m=1}^{\infty} \frac{(-1)^{m} \chi(m) w^{m} q^{m}}{[m]_{q^{\alpha}}^{s}} \\
& =[2]_{q} \sum_{m=1}^{\infty} \sum_{a=0}^{d-1} \frac{(-1)^{a+d m} \chi(a+d m) w^{a+d m} q^{a+d m}}{[a+d m]_{q^{\alpha}}^{s}} \\
& =[d]_{q^{\alpha}}^{-s} \sum_{a=0}^{d-1}(-1)^{a} \chi(a) w^{a} q^{a}[2]_{q} \sum_{m=1}^{\infty} \frac{(-1)^{m}\left(w^{d}\right)^{m}\left(q^{d}\right)^{m}}{\left[\left(\frac{a}{d}+m\right)\right]_{q^{d \alpha}}^{s}} \\
(3.3) & =[d]_{q^{\alpha}}^{-s} \sum_{a=0}^{d-1}(-1)^{a} \chi(a) w^{a} q^{a} \zeta_{q^{d}, w^{d}}^{(\alpha)}\left(s, \frac{a}{d}\right)
\end{aligned}
$$

From (3.3), we obtain the following theorem:
Theorem 8. Let χ be a Dirichlet's character with conductor $d(=o d d) \in$ \mathbb{N}. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. Then we have

$$
\begin{equation*}
\boldsymbol{l}^{q}(s, \alpha, w \mid \chi)=[d]_{q^{\alpha}}^{-s} \sum_{a=0}^{d-1}(-1)^{a} \chi(a) w^{a} q^{a} \zeta_{q^{d}, w^{d}}^{(\alpha)}\left(s, \frac{a}{d}\right) \tag{3.4}
\end{equation*}
$$

where $\zeta_{q, w}^{(\alpha)}(s, x)$ twisted Hurwitz q-Euler zeta functions.
We now consider the function $\Im_{q}^{(\alpha)}(s, a, w \mid F)$ as follows:

$$
\begin{equation*}
\Im_{q}^{(\alpha)}(s, a, w \mid F)=[2]_{q} \sum_{m \equiv a(\bmod F)} \frac{(-1)^{m} w^{m} q^{m}}{[m]_{q^{\alpha}}^{s}} \tag{3.5}
\end{equation*}
$$

If F odd number then we have

$$
\begin{aligned}
\Im_{q}^{(\alpha)}(s, a, w \mid F) & =[2]_{q} \sum_{m \equiv a(\bmod F)} \frac{(-1)^{m} w^{m} q^{m}}{[m]_{q^{\alpha}}^{s}} \\
& =[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m F+a} w^{m F+a} q^{m F+a}}{[m F+a]_{q^{\alpha}}^{s}} \\
& =\frac{(-1)^{a} w^{a} q^{a}}{[F]_{q^{\alpha}}^{s}} \sum_{m=0}^{\infty} \frac{(-1)^{m}\left(w^{F}\right)^{m}\left(q^{F}\right)^{m}}{\left[m+\frac{a}{F}\right]_{q^{\alpha F}}^{s}} \\
& =\frac{(-1)^{a} w^{a} q^{a}}{[F]_{q^{\alpha}}^{s}} \boldsymbol{\zeta}_{q^{F}, w^{F}}^{(\alpha)}\left(s, \frac{a}{F}\right)
\end{aligned}
$$

From (3.2) and (3.6) we obtain the following theorem:

Theorem 9. Let χ be a Dirichlet's character with conductor $d(=$ odd $) \in \mathbb{N}$. For each $\alpha, n \in \mathbb{N}^{*}$ and $\in T_{p}$. We get

$$
\begin{equation*}
\Im_{q}^{(\alpha)}(-n, a, w \mid F)=(-1)^{a} w^{a} q^{a}[F]_{q^{\alpha}}^{n} \widetilde{E}_{n, w^{F}, q^{F}}^{(\alpha)}\left(\frac{a}{F}\right) \tag{3.7}
\end{equation*}
$$

By (3.4) and (3.7), we obtain the following corollary:
Corollary 2. Let χ be a Dirichlet's character with conductor d ($=$ odd) $\in \mathbb{N}$. For each $\alpha, n \in \mathbb{N}^{*}$ and $w \in T_{p}$. We get

$$
\boldsymbol{l}^{q}(s, \alpha, w \mid \chi)=\sum_{a=0}^{d-1} \chi(a) \Im_{q}^{(\alpha)}(s, a, w \mid d)
$$

References

[1] Araci, S. Erdal, D. and Seo, J.J., A Study on the The Weighted q-Genocchi Numbers and Polynomials Their Interpolation function, (Submitted)
[2] Araci, S. Seo, J.J. and Erdal, D., Different Approach On The (h, q) Genocchi Numbers and Polynomials Associated with q-Bernstein Polynomials, (Submitted)
[3] Araci, S. Seo, J.J. and Erdal, D., New Construction weighted (h,q)-Genocchi numbers and Polynomials Related to Zeta Type Functions, Discrete Dynamics in Nature and Society(in press)
[4] Kim, T., A New Approach to q-Zeta Function, Adv. Stud. Contemp. Math. 11 (2) 157-162.
[5] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[6] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT]
[7] Kim, T., On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21(2011), no.2, p. 207-215, http://arxiv.org/abs/1011.5305.
[8] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.
[9] Kim, T., q-Volkenborn integration, Russ. J. Math. phys. 9(2002), 288-299.
[10] Kim, T., An invariant p-adic q-integrals on \mathbb{Z}_{p}, Applied Mathematics Letters, vol. 21, pp. 105-108,2008.
[11] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15-27.
[12] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218-225.
[13] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16 (2009), no.4,484-491.
[14] Kim, T. and Rim, S.-H., On the twisted q-Euler numbers and polynomials associated with basic q-l-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738-744, 2007.
[15] T. Kim, On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071
[16] Park. Kyoung Ho., On Interpolation Functions of the Generalized Twisted (h, q)Euler Polynomials, Journal of Inequalities and Applications., Volume 2009, Article ID 946569, 17 pages
[17] Jang. L.-C., On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals, Journal of the Korean Mathematical Society, vol. 44, no. 1, pp. 1-10, 2007.
[18] Ryoo. C. S., A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21(2011), 47-54.
[19] Ryoo. C. S, Lee. H. Y, and Jung. N. S., A note on the twisted q-Euler numbers and polynomials with weight α, (Communicated).
[20] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp. Math., 11(2005), 205-218.
[21] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl., 324(2006), 790-804.
[22] Y. Simsek, On p-Adic Twisted q - L-Functions Related to Generalized Twisted Bernoulli Numbers, Russian J. Math. Phys., 13(3)(2006), 340-348.
[23] Dolgy, D-V., Kang, D-J., Kim, T., and Lee, B., Some new identities on the twisted $(h ; q)$-Euler numbers q-Bernstein polynomials, arXiv: 1105.0093.

Serkan Aracı
Department of Mathematics, University of Gaziantep, Faculty of Science and Arts,
Gaziantep 27310, Turkey.
E-mail: mtsrkn@hotmail.com

Nurgül Aslan
Department of Mathematics, University of Gaziantep, Faculty of Science and Arts,
Gaziantep 27310, Turkey.
E-mail: guzguzelim27@hotmail.com

Jong Jin Seo
Department of Applied Mathematics, Pukyong National University,

Busan 608-737, Korea.
E-mail: seo2011@pknu.ac.kr

