• Title/Summary/Keyword: Q polynomials

Search Result 206, Processing Time 0.024 seconds

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.643-654
    • /
    • 2021
  • In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

ON THE (p, q)-ANALOGUE OF EULER ZETA FUNCTION

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.303-311
    • /
    • 2017
  • In this paper we define (p, q)-analogue of Euler zeta function. In order to define (p, q)-analogue of Euler zeta function, we introduce the (p, q)-analogue of Euler numbers and polynomials by generalizing the Euler numbers and polynomials, Carlitz's type q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Euler numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Euler polynomials by using computer.

SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS

  • KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.37-56
    • /
    • 2020
  • In this paper we discuss some interesting properties of (p, q)-special polynomials and derive various relations. We gain some relations between (p, q)-zeta function and (p, q)-special polynomials by considering (p, q)-analogue Euler sum types. In addition, we derive the relationship between (p, q)-polylogarithm function and (p, q)-special polynomials.

ON THE (p, q)-POLY-KOROBOV POLYNOMIALS AND RELATED POLYNOMIALS

  • KURT, BURAK;KURT, VELI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.45-56
    • /
    • 2021
  • D.S. Kim et al. [9] considered some identities and relations for Korobov type numbers and polynomials. In this work, we investigate the degenerate Korobov type Changhee polynomials and the (p,q)-poly-Korobov polynomials. We give a generalization of the Korobov type Changhee polynomials and the (p,q) poly-Korobov polynomials. We prove some properties and identities and explicit relations for these polynomials.