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EXPLICIT PROPERTIES OF q-SIGMOID POLYNOMIALS
COMBINING q-COSINE FUNCTION†
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Abstract. In this paper, we introduce q-sigmoid polynomials combining
q-cosine function. We find several properties and identities of these poly-
nomials which are related to sigmoid function using deep learning.
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1. Introduction

In [6], Jackson who published influential papers on the subject introduce the
q-number and its notation stems. We begin by introducing several definitions
related to q-numbers used in this paper.

Thoughout this paper, the symbol, N,Z,R and C denotes the set of natural
numbers, the set of integers, the set of real numbers and the set of complex
numbers, respectively.
Let n, q ∈ R with q ̸= 1. the number

[n]q =
1− qn

1− q (1.1)

is called q-number. We note that limq→1[n]q = n. In particular, for k ∈ Z, [k]q
is called q-integer.

From q-number appearance, many mathematicians studied the this field such
as q-differential equations, q-series, q-trigonometric function, and so on, see [1, 7,
9-11]. Of course, mathematicians constructed and researched about q-Gaussian
binomial coefficients.
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Definition 1.1. The q-Gaussian binomial coefficients are defined by[
n
k

]
q

=
[n]q!

[n− k]q![k]q!
=

[
n

n− k

]
q

(1.2)

where m and r are non-negative integers. For r = 0 the value is 1 since
the numerator and the denominator are both empty products. We note that
[n]q! = [n]q[n− 1]q · · · [1]q.

Definition 1.2. Let z be any complex numbers with |z| < 1. Two forms of
q-exponential functions can be expressed as

eq(z) =

∞∑
n=0

zn

[n]q!
, Eq(z) =

∞∑
n=0

q(
n
2)

zn

[n]q!
. (1.3)

We note that limq→1 eq(z) = ez. Indeed, the derivation of the power series
expressions of the two q-exponential functions (1.3) are from Euler. After the
limit formulas for the q-exponential functions, which given from Rawlings, sev-
eral other interesting q-series expansions are presented in the classical book of
Andrews. Moreover, Jackson extensively studied q-derivatives and q-integrals.

Theorem 1.3. From Definition 1.2, we note that

(i) eq(x)eq(y) = eq(x+ y), if yx = qxy.

(ii) eq(x)Eq(−x) = 1.

(iii) eq−1(x) = Eq(x).

(1.4)

Definition 1.4. The definition of the q-derivative operator of any function f
follows that

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x ̸= 0, (1.5)

and Dqf(0) = f ′(0). We can prove that f is differentiable at 0, and it is clear
that Dqx

n = [n]qx
n−1.

In [7], Victor and Pokman publised book about quantum calculus including
q-derivative and q-analogue of (x−a)n and q-trigonometric functions and so on.

Definition 1.5. The q-analogues of (x− a)n and (x+ a)n are defined by

(i) (x⊖ a)nq =

{
1 if n = 0

(x− a)(x− qa) · · · (x− qn−1a) if n ≥ 1
,

(ii) (x⊕ a)nq =

{
1 if n = 0

(x+ a)(x+ qa) · · · (x+ qn−1a) if n ≥ 1
, respectively.

(1.6)
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Definition 1.6. The q-trigonometric functions are defined by

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,

(1.7)

where, SINq(x) = sinq−1(x),COSq(x) = cosq−1(x).

From the above Definition, we note that
(i) Eq(ix) = COSq(x) + iSINq(x)

(ii) Eq(−ix) = COSq(x)− iSINq(x).

In a deep learning network, we pass the nonlinear function through the non-
linear function, rather than passing it directly to the next layer. The function
used at this time is called the activation function. Among these activation
functions, there is a sigmoid function. The definition of sigmoid function is as
follows

Definition 1.7. Let z ∈ C. Then sigmoid function is expressed as

s(z) =
1

1 + e−z
.

In order to find various applications, various studies were done by investigat-
ing the sigmoid function. For example, a variant sigmoid function with three
parameters has been employed in order to explain hybrid sigmoidal networks
and, also, sigmoid function, which is also called logistic function, has been de-
fined using flexible sigmoidal mixed models based on logistic family curves for
medical applications, see [2-5].

The definition of q-sigmoid polynomials of the third row are as follows, see
[11].

Definition 1.8. The q-sigmoid polynomials can be expressed as
∞∑

n=0

Sn,q(z)
tn

[n]q!
=

1

1 + eq(−t)
eq(tz) (1.8)

2. Some basic properties of q-cosine sigmoid polynomials

In this section, we define q-cosine sigmoid polynomials using q-trigonometric
functions. From these polynomials, we derive some properties and identities.

Definition 2.1. Let |q| < 1 and x, y ∈ R with i =
√
−1. Then we define

generating functions of the q-cosine sigmoid polynomials,
∞∑

n=0

CSn,q(x, y)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)COSq(ty). (2.1)

From Definition 2.1, cosine sigmoid polynomials can be defined for q → 1
such as

∑∞
n=0 CSn(x, y) t

n

n! =
1

1+e−t e
txcos(ty).
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Theorem 2.2. Let x, y ∈ R with i =
√
−1. Then we obtain

∞∑
n=0

(
Sn,q((x⊕ iy)q) + Sn,q((x⊖ iy)q)

2

)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)COSq(ty).

(2.2)

Proof. To find the result, we consider (x⊕ iy)q instead of z in the generating
function of q-sigmoid polynomials such as

∞∑
n=0

Sn,q((x⊕ iy)q)
tn

[n]q!
=

1

1 + eq(−t)
eq(t(x⊕ iy)q)

=
1

1 + eq(−t)

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

q(
n−k

2 )xk(iy)n−k

)
tn

[n]q!

=
1

1 + eq(−t)

∞∑
n=0

xn
tn

[n]q!

∞∑
n=0

q(
n
2)(iy)n

tn

[n]q!

=
1

1 + eq(−t)
eq(tx)Eq(ity).

(2.3)
From a property of q-trigonometric functions, Eq(ity) = COSq(ty)+ iSINq(ty),
we have

∞∑
n=0

Sn,q((x⊕ iy)q)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)(COSq(ty) + iSINq(ty)). (2.4)

Also, we find the following equation using the same similar method.
∞∑

n=0

Sn,q((x⊖ iy)q)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)(COSq(ty)− iSINq(ty)). (2.5)

From (2.4) and (2.5), we obtain
∞∑

n=0

(Sn,q((x⊕ iy)q) + Sn,q((x⊖ iy)q))
tn

[n]q!
=

2

1 + eq(−t)
eq(tx)COSq(ty).

(2.6)
From the above equation, we obtain the required result. �

Remark 2.1. From Definition 2.1 and Theorem2.2, the following holds
Sn,q((x⊕ iy)q) + Sn,q((x⊖ iy)q) = 2CSn,q(x, y).

In [8], authors define Cn(x, y) which is related to the Bernoulli and Euler
polynomials. In addition, by combining q-numbers in Cn(x, y), [9] is introduced
as follows.

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
= eq(tx)COSq(ty). (2.7)
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Theorem 2.3. Let |q| < 1. Then we derive

CSn,q(x, y) =
n∑

k=0

[
n
k

]
q

Sk,qCn−k,q(x, y), (2.8)

where Sn,q is the q-sigmoid numbers.

Proof. From the generating function of q-cosine sigmoid polynomials and
Cn,q(x, y), there exists a relation between q-cosine sigmoid polynomials and q-
sigmoid numbers as follows.

∞∑
n=0

CSn,q(x, y)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)COSq(ty)

=

∞∑
n=0

Sn,q
tn

[n]q!

∞∑
n=0

Cn,q(x, y)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

Sk,qCn−k,q(x, y)

)
tn

[n]q!
.

(2.9)

From (2.9), we find the following result. �

Corollary 2.4. Setting q → 1, one holds

CSn(x, y) =
n∑

k=0

(
n

k

)
SkCn−k(x, y),

where Cn(x, y) = etxcos(ty), see [8].

Theorem 2.5. Let eq(−t) ̸= −1 with |q| < 1. Then we have

Cn,q(x, y) = CSn,q(x, y) +
n∑

k=0

[
n
k

]
q

(−1)n−k
CSk,q(x, y). (2.10)

Proof. Consider that eq(−t) ̸= −1. Then, we have
∞∑

n=0

CSn,q(x, y)
tn

[n]q!
(1 + eq(−t)) = eq(tx)COSq(ty). (2.11)

The left-hand side of (2.11) can be transformed as
∞∑

n=0

CSn,q(x, y)
tn

[n]q!
(1 + eq(−t))

=

∞∑
n=0

(
CSn,q(x, y) +

n∑
k=0

[
n
k

]
q

(−1)n−k
CSk,q(x, y)

)
tn

[n]q!

(2.12)
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and the right-hand side of (2.11) can be changed such as

∞∑
n=0

(
CSn,q(x, y) +

n∑
k=0

[
n
k

]
q

(−1)n−k
CSk,q(x, y)

)
tn

[n]q!

= eq(tx)COSq(ty) =

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
.

(2.13)

Therefore, we find the required result by the comparison of coefficients. �

Corollary 2.6. In Theorem 2.5, the following holds

Cn(x, y) = CSn(x, y) +
n∑

k=0

(
n

k

)
(−1)n−k

CSk(x, y).

Corollary 2.7. From Theorem 2.5, one holds

2CSn,q(x, y)− CEn,q(x, y) =
n∑

k=0

[
n
k

]
q

(CEk,q(x, y)− 2(−1)n−k
CSk,q(x, y)),

where CEn,q(x, y) is the q-cosine Euler polynomials.

Theorem 2.8. For |q| < 1, we find

∂

∂x
CSn,q(x, y) = [n]qCSn−1,q(x, y). (2.14)

Proof. Using partial q-derivative for q-cosine sigmoid polynomials, we have

∂

∂x

∞∑
n=0

CSn,q(x, y)
tn

[n]q!
=

1

1 + eq(−t)
COSq(ty)

∂

∂x
eq(tx)

=
t

1 + eq(−t)
eq(tx)COSq(ty)

=

∞∑
n=0

[n]qCSn−1,q(x, y)
tn

[n]q!
.

(2.15)

Thus, we have the required result. �

Theorem 2.9. For |q| < 1 and k(≥ 0) ∈ Z, we investigate

CSn,q(x, y) =
[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kSn−k,q(x), (2.16)

where [x] is the greatest integer not exceeding x.
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Proof. From the generating function of q-cosine sigmoid polynomials, we can
find a relation as

∞∑
n=0

CSn,q(x, y)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)COSq(ty)

=

∞∑
n=0

Sn,q(x)
tn

[n]q!
COSq(ty),

(2.17)

where Sn,q(x) is the q-sigmoid polynomials.
Applying COSq(x) =

∑∞
n=0(−1)nq(2n−1)n x2n

[2n]q !
in (2.17), we rewrite (2.18) such

as
∞∑

n=0

CSn,q(x, y)
tn

[n]q!

=

∞∑
n=0

Sn,q(x)
tn

[n]q!

∞∑
n=0

(−1)nq(2n−1)ny2n
t2n

[2n]q!

=

∞∑
n=0

(
n∑

k=0

(−1)kq(2k−1)kSn−k,q(x)y
2k

)
tn+k

[n− k]q![2k]q!

=

∞∑
n=0

 [n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kSn−k,q(x)

 tn

[n]q!
.

(2.18)

From the above equation, we obtain Theorem 2.9. �
Corollary 2.10. Putting y = 1 in Theorem 2.9, the following holds

CSn,q(x, 1) =
[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kSn−k,q(x).

Corollary 2.11. Considering q → 1 in Theorem 2.9, one holds

CSn(x, y) =
[n2 ]∑
k=0

(
n

2k

)
(−1)ky2kSn−k(x).

3. Some special properties of q-cosine signoid polynomials

In this section, we derive some special identities of q-cosine sigmoid polynomi-
als. We can find various properties by applying some formulae of q-exponential
functions and q-trigonometric functions.
Lemma 3.1. Let |q| < 1 and a, x ∈ R. Then, we have

(i) CSn,q((x⊕ a)q, y) =
n∑

k=0

[
n
k

]
q

q(
n−k

2 )
CSk,q(x, y)an−k,

(ii) CSn,q((x⊖ a)q, y) =
n∑

k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
CSk,q(x, y)an−k.

(3.1)
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Proof. (i) If we substitute (x⊕ a)q instead of x, then we have

∞∑
n=0

CSn,q((x⊕ a)q, y)
tn

[n]q!

=
1

1 + eq(−t)
eq((x⊕ a)qt)COSq(ty)

=
1

1 + eq(−t)
eq(tx)Eq(ta)COSq(ty)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

q(
n−k

2 )
CSk,q(x, y)an−k

)
tn

[n]q!
.

(3.2)

Comparing the coefficients of the both sides in the (3.2), we find the required
result.
(ii) Similarly, consider (x ⊖ a)q in the q-cosine sigmoid polynomials. Then we
have

∞∑
n=0

CSn,q((x⊖ a)q, y)
tn

[n]q!
=

1

1 + eq(−t)
eq(tx)Eq(−ta)COSq(ty). (3.3)

From (3.3), we obtain the alternative finite summation which is the required
result. �

Theorem 3.2. Let |q| < 1 and a, x ∈ R. Then we obtain

CSn,q((x⊕ a)q, y) + CSn,q((x⊖ a)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CS2k+1,q(x, y)a

n−(2k+1), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
CS2k,q(x, y)an−2k, if n : even

.

(3.4)

Proof. Using Lemma 3.1 (i) and (ii), we derive

CSn,q((x⊕ a)q, y) + CSn,q((x⊖ a)q, y)

=

n∑
k=0

[
n
k

]
q

(1 + (−1)n−k)q(
n−k

2 )
CSk,q(x, y)an−k.

(3.5)

If we consider two cases when n is odd or even, then we obtain the required
result in the q-cosine sigmoid polynomials. �
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Corollary 3.3. Setting a = 1 in Theorem 3.2, the following holds
CSn,q((x⊕ 1)q, y) + CSn,q((x⊖ 1)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CS2k+1,q(x, y), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
CS2k,q(x, y), if n : even

.

Theorem 3.4. Let a ∈ R with |q| < 1. Then we find

CSn,q(−1, y) =
n∑

k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )(Ck,q(a, y)− CSn,q(a, y))an−k. (3.6)

Proof. Setting x = −1 and using a property of q-exponential function which
is eq(x)Eq(−x) = 1, we have

∞∑
n=0

CSn,q(−1, y)
tn

[n]q!

=
1

1 + eq(−t)
(1 + eq(−t)− 1)COSq(ty)

= COSq(ty)−
1

1 + eq(−t)
COSq(ty)

=

(
eq(at)COSq(ty)−

1

1 + eq(−t)
eq(at)COSq(ty)

)
Eq(−at).

(3.7)

Using [n]q−1 ! = q−(
n
2)[n]q! and Eq(x) =

∑∞
n=0

xn

[n]q−1 !
in the (3.7), we find

∞∑
n=0

CSn,q(−1, y)
tn

[n]q!

=

∞∑
n=0

(Cn,q(a, y)− CSn,q(a, y))
tn

[n]q!

∞∑
n=0

(−1)nq(
n
2)an

tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )(Ck,q(a, y)− CSn,q(a, y))an−k

)
tn

[n]q!
,

(3.8)

which is the required result. �
Corollary 3.5. Putting a = 1 in Theorem 3.4, the following holds

CSn,q(−1, y) =
n∑

k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )(Ck,q(1, y)− CSn,q(1, y)).

Corollary 3.6. Setting q → 1 in Theorem 3.4, one holds

CSn(−1, y) =
n∑

k=0

(
n

k

)
(−1)n−k(Ck(a, y)− CSn(a, y))an−k.
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4. Some identities which are related to q-cosine sigmoid polynomials

In this section, we find some symmetric relations for q-cosine sigmoid poly-
nomials using various ways.

Theorem 4.1. Let a, b( ̸= 0) ∈ R. Then we have
n∑

k=0

[
n
k

]
q

an−kbkCSn−k,q

(x
a
,
y

a

)
CSk,q

(x
b
,
y

b

)
=

n∑
k=0

[
n
k

]
q

bn−kakCSn−k,q

(x
b
,
y

b

)
CSk,q

(x
a
,
y

a

)
.

(4.1)

Proof. Suppose that

A :=
(eq(tx)COSq(ty))

2

1 + (eq(−at))(1 + eq(−bt))
. (4.2)

From form A, we find

A =
1

1 + eq(−at)
eq(tx)COSq(ty)

1

1 + eq(−bt)
eq(tx)COSq(ty)

=

∞∑
n=0

CSn,q
(x
a
,
y

a

) (at)n

[n]q!

∞∑
n=0

CSn,q
(x
b
,
y

b

) (bt)n

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

an−kbkCSn−k,q

(x
a
,
y

a

)
CSk,q

(x
b
,
y

b

)) tn

[n]q!
.

(4.3)

Also, we can transform the form A such as follows.

A =
1

1 + eq(−bt)
eq(tx)COSq(ty)

1

1 + eq(−at)
eq(tx)COSq(ty)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

bn−kakCSn−k,q

(x
b
,
y

b

)
CSk,q

(x
a
,
y

a

)) tn

[n]q!
.

(4.4)

Comparing the coefficient in (4.3) and (4.4), we can find the desired result. �

Corollary 4.2. If q → 1 in Theorem 4.1, we have
n∑

k=0

(
n

k

)
an−kbkCSn−k

(x
a
,
y

a

)
CSk

(x
b
,
y

b

)
=

n∑
k=0

(
n

k

)
bn−kakCSn−k

(x
b
,
y

b

)
CSk

(x
a
,
y

a

)
,

where CSn(x, y) is the cosine sigmoid polynomials.
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Corollary 4.3. Set a = 1 in Theorem 4.1. Then one holds
n∑

k=0

[
n
k

]
q

bkCSn−k,q (x, y)CSk,q
(x
b
,
y

b

)
=

n∑
k=0

[
n
k

]
q

bn−k
CSn−k,q

(x
b
,
y

b

)
CSk,q (x, y) .

In [9], we can find the Definition of q-cosine Bernoulli polynomials. From the
Definitions of these polynomials, we can obtain some relations which are related
to q-cosine sigmoid polynomials.

Theorem 4.4. Let eq(−t) ̸= −1 and t ̸= 0. Then, we derive

[n]qCSn−1,q(x, y) + CBn,q(x, y)

=

n∑
k=0

[
n
k

]
q

(
CBk,q(x, y) + (−1)n−k−1[k]qCSk−1,q(x, y)

)
,

(4.5)

where CBn,q(x, y) is the q-cosine Bernoulli polynomials.

Proof. To find a relation between q-cosine sigmoid polynomials and q-cosine
Bernoulli polynomials, we transform q-cosine sigmoid polynomials such as

∞∑
n=0

CSn,q(x, y)
tn

[n]q!
=

eq(t)− 1

t(1 + eq(−t))

∞∑
n=0

CBn,q(x, y)
tn

[n]q!
. (4.6)

From the above equation, we find

∞∑
n=0

CSn,q(x, y)
tn+1

[n]q!

( ∞∑
n=0

(−1)n tn

[n]q!
+ 1

)

=

∞∑
n=0

CBn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
− 1

)
.

(4.7)

The left-hand side of (4.7) can be transformed as

∞∑
n=0

CSn,q(x, y)
tn+1

[n]q!

( ∞∑
n=0

(−1)n tn

[n]q!
+ 1

)

=

∞∑
n=0

[n]qCSn−1,q(x, y)
tn

[n]q!

( ∞∑
n=0

(−1)n tn

[n]q!
+ 1

)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

(−1)n−k[k]qCSk−1,q(x, y) + [n]qCSn−1,q(x, y)

)
tn

[n]q!
.

(4.8)



552 Jung Yoog Kang

The right-hand side of (4.7) can be changed as
∞∑

n=0

CBn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
− 1

)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q
CBk, q(x, y)− CBn,q(x, y)

)
tn

[n]q!
.

(4.9)

Comparing coefficients of (4.8) and (4.9), we find the required result. �
Corollary 4.5. If q → 1 in Theorem 4.4, one holds

nCSn−1(x, y) + CBn(x, y) =
n∑

k=0

(
n

k

)(
CBk(x, y) + (−1)n−k−1kCSk−1(x, y)

)
,

where CBn(x, y) is the cosine Bernoulli polynomials.
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