• Title/Summary/Keyword: Q&A

Search Result 11,274, Processing Time 0.036 seconds

WEIGHTED BLOCH SPACES IN $C^n$

  • Kyong Taik Hahn;Ki Seong Choi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • In this paper, weighted Bloch spaces $B_q (q > 0)$ are considered on the open unit ball in $C^n$. These spaces extend the notion of Bloch spaces to wider classes of holomorphic functions. It is proved that the functions in a weighted Bloch space admit certain integral representation. This representation formula is then used to determine the degree of growth of the functions in the space $B_q$. It is also proved that weighted Bloch space is a Banach space for each weight q > 0, and the little Bloch space $B_q,0$ associated with $B_q$ is a separable subspace of $B_q$ which is the closure of the polynomials for each $q \geq 1$.

  • PDF

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

Analysis of a Time-constant Effect in the Q-filter for Designing a Disturbance Observer: Balancing Control of a Single-wheel Robot (외란관측기 설계를 위한 Q필터 시정수 영향 분석 : 외바퀴 로봇의 균형 제어 응용)

  • Lee, Sangdeok;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.123-129
    • /
    • 2016
  • Disturbance Observer(DOB) based control is considered for the purpose of the balancing performance enhancement in a single-wheel robot. Design of DOB can be folded into two parts, the inverse model of the plant and the Q-filter. The inverse model is derived from the inverted stick model and a Q-filter is designed to stabilize the inverse model. In this paper, a Q31 filter is designed and its effect is evaluated by experimental studies. The time constant provides a complimentary characteristic between the disturbance suppression and the sensor noise immunity. Therefore, suitable selection of the time-constant must be considered. Comparative experiments are conducted to investigate the control performances when three different Q filters are respectively applied in the DOB. Through the analysis of the experimental results, a time constant is designed to have a proper value in the design of DOB for balancing control of a single-wheel robot.

STRUCTURE OF THE ZEROS OF q-BERNOULLI POLYNOMIALS

  • RYOO C. S.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper we observe the structure of the roots of q-Bernoulli polynomials, ${\beta}_n(w,h{\mid}q)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the real roots of ${\beta}_n(w,h{\mid}q)$ for $-{\frac{1}{5}},-{\frac{1}{2}}$. Finally, we give a table for numbers of real and complex zeros of ${\beta}_n(w,h{\mid}q)$.

SOME GROWTH ASPECTS OF SPECIAL TYPE OF DIFFERENTIAL POLYNOMIAL GENERATED BY ENTIRE AND MEROMORPHIC FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH ORDERS

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.899-927
    • /
    • 2019
  • In this paper we establish some results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q)-th order and relative (p, q)-th lower order where p, q are any two positive integers and that of a special type of differential polynomial generated by one of the factors.

WEAK HOPF ALGEBRAS CORRESPONDING TO NON-STANDARD QUANTUM GROUPS

  • Cheng, Cheng;Yang, Shilin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.463-484
    • /
    • 2017
  • We construct a weak Hopf algebra $wX_q(A_1)$ corresponding to non-standard quantum group $X_q(A_1)$. The PBW basis of $wX_q(A_1)$ is described and all the highest weight modules of $wX_q(A_1)$ are classified. Finally we give the Clebsch-Gordan decomposition of the tensor product of two highest weight modules of $wX_q(A_1)$.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.