WEAK HOPF ALGEBRAS CORRESPONDING TO NON-STANDARD QUANTUM GROUPS

Cheng Cheng and Shilin Yang

Abstract

We construct a weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ corresponding to non-standard quantum group $X_{q}\left(A_{1}\right)$. The PBW basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$ is described and all the highest weight modules of $\mathfrak{w} X_{q}\left(A_{1}\right)$ are classified. Finally we give the Clebsch-Gordan decomposition of the tensor product of two highest weight modules of $\mathfrak{w} X_{q}\left(A_{1}\right)$.

Introduction

In this paper, we always assume that the base closed field is \mathbb{F} with characteristic 0 . All algebras, modules are over the field \mathbb{F}. The parameter $q \in \mathbb{F}$ is non-zero and not a root of unity.

Quantum groups play an important role in mathematics and physics. A new quantum group was constructed in [2] solving exotic solution of quantum YangBaxter equation. This new quantum group is called the non-standard quantum group. Jing et al. [4] derived a new quantum group $X_{q}(2)$ by employing the FRT method. All finite dimensional irreducible representations of $X_{q}(2)$ were classified. It is noted that dimensions of the irreducible representations are only one or two. In 1993, Aghamohammadi et al. (see [1]) used the method of FRT to obtain the non-standard quantum group $X_{q}\left(A_{n-1}\right)$ corresponding to type A_{n-1}. Note that $X_{q}\left(A_{1}\right)$ is just quantum algebra $X_{q}(2)$. It is shown that this kind of quantum group has a Hopf algebra structure (see [3, 5]). On the other hand, Li defined a kind of weak Hopf algebra on a bialgebra with a weak antipode in [6] and many interesting results are obtained. Yang constructed weak Hopf algebras corresponding to Cartan matrices in [9] and gave their PBW bases. It is noted that finite dimensional integrable representations of $\mathfrak{w} s l_{q}(2)$ were described and the decomposition of the tensor product of two finite dimensional integrable modules were considered in [10].

[^0]In this paper, we intend to study the weak Hopf algebra structure corresponding to the non-standard quantum group $X_{q}\left(A_{1}\right)$. By definition, $X_{q}\left(A_{1}\right)$ is the associative algebra over the field \mathbb{F} with 1 generated by six generators $K_{1}^{ \pm 1}, K_{2}^{ \pm 1}, E, F$ with the following relations

$$
\begin{gathered}
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, i=1,2, K_{1} K_{2}=K_{2} K_{1}, \\
K_{1} E=q_{1}^{-1} E K_{1}, K_{1} F=q_{1} F K_{1} \\
K_{2} E=q_{2} E K_{2}, K_{2} F=q_{2}^{-1} F K_{2} \\
E^{2}=F^{2}=0 \\
E F-F E=\frac{K_{2} K_{1}^{-1}-K_{1} K_{2}^{-1}}{q-q^{-1}}
\end{gathered}
$$

where $q_{1}=q$ and $q_{2}=-q^{-1}$.
First we add a centeral generator J and weaken the group-likes to get an algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$. It is verified that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra but not a Hopf algebra. Then the PBW basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$ is given in the similar way as [9]. We also give the sufficient and necessary conditions of the isomorphism between $\mathfrak{w} X_{q}\left(A_{1}\right)$ and $\mathfrak{w} X_{p}\left(A_{1}\right)$ as weak Hopf algebras. By applying the idea in [10] and some well-known facts, we can construct all highest weight representations of $\mathfrak{w} X_{q}\left(A_{1}\right)$ and the Clebsch-Gordan decomposition of $\mathfrak{w} X_{q}\left(A_{1}\right)$-modules. It is indicated that the indecomposable modules of $\mathfrak{w} X_{q}\left(A_{1}\right)$ are not necessarily irreducible. These results for $\mathfrak{w} X_{q}\left(A_{1}\right)$ are not the same as those in [10]. In fact they just extend the results in [4].

The paper is arranged as follows. In Section 1, we introduce some notions and define the algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$, then we prove that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra. In Section 2, We investigate the PBW basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$. In Section 3, we describe the conditions of the weak Hopf isomorphisms between $\mathfrak{w} X_{q}\left(A_{1}\right)$ and $\mathfrak{w} X_{p}\left(A_{1}\right)$. In Section 4, we classify all the highest weight modules of $\mathfrak{w} X_{q}\left(A_{1}\right)$. Then in Section 5, we give the Clebsch-Gordan decomposition of tensor product of two highest weight modules of $\mathfrak{w} X_{q}\left(A_{1}\right)$.

1. Preliminaries

In this section, we construct the weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ by weaken K_{i} of $X_{q}\left(A_{1}\right)$ and the defining relation $K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1(i=1,2)$. Firstly, we replace $\left\{K_{i}, K_{i}^{-1} \mid i=1,2\right\}$ by $\left\{K_{i}, \bar{K}_{i} \mid i=1,2\right\}$ and introduce the new generator J such that

$$
K_{i} \bar{K}_{i}=\bar{K}_{i} K_{i}=J \quad(i=1,2) .
$$

Secondly, we give the following the definition.
Definition 1.1 (see [9]). If E satisfies

$$
K_{1} E=q_{1}^{-1} E K_{1}, K_{2} E=q_{2} E K_{2} \text { and } \bar{K}_{1} E=q_{1} E \bar{K}_{1}, \bar{K}_{2} E=q_{2}^{-1} E \bar{K}_{2},
$$

we say that E is of type I. If E satisfies

$$
K_{1} E \bar{K}_{1}=q_{1}^{-1} E, K_{2} E \bar{K}_{2}=q_{2} E
$$

we say that E is of type II.
Similarly, we can define F is of type I (type II). That is, if F satisfies

$$
K_{1} F=q_{1} F K_{1}, K_{2} F=q_{2}^{-1} F K_{2} \text { and } \bar{K}_{1} F=q_{1}^{-1} F \bar{K}_{1}, \bar{K}_{2} F=q_{2} F \bar{K}_{2},
$$

we say that F is of type I. If F satisfies

$$
K_{1} F \bar{K}_{1}=q_{1} F, K_{2} F \bar{K}_{2}=q_{2}^{-1} F,
$$

we say that F is of type II.
Notation. (See [9]) The notation $d=(k \mid \bar{k}), k, \bar{k}=0$ or 1 indicated that if $\frac{k}{k}=1$ (resp. 0), the corresponding generator E is of type I (resp. type II), and if $\bar{k}=1$ (resp. 0), the corresponding generator F is of type II (resp. type I). The information before \mid is related to E. The information after | is related to F. E and F are said to be of type d if E and F are of type I or type II according to d.

Now, we can give the definition of the algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$.
Definition 1.2. The algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ is defined as an associative algebra over the field \mathbb{F} with 1 generated by $J, K_{1}, K_{2}, \bar{K}_{1}, \bar{K}_{2}, E, F$ with the relations

$$
\begin{gathered}
K_{1} K_{2}=K_{2} K_{1}, \bar{K}_{1} \bar{K}_{2}=\bar{K}_{2} \bar{K}_{1}, K_{i} \bar{K}_{j}=\bar{K}_{j} K_{i}, i, j=1,2, \\
K_{i} \bar{K}_{i}=J=K_{i} \bar{K}_{i}, K_{i} J=J K_{i}=K_{i}, \bar{K}_{i} J=J \bar{K}_{i}=\bar{K}_{i}, i=1,2,
\end{gathered}
$$

E and F are of type d,
$E^{2}=F^{2}=0$,
$E F-F E=\frac{K_{2} \bar{K}_{1}-K_{1} \bar{K}_{2}}{q-q^{-1}}$.
In this case, we say $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type d.
Lemma 1.3. In $\mathfrak{w} X_{q}\left(A_{1}\right)$ of type d, the following statements hold.
(1) $J, 1-J$ are idempotent elements.
(2) J is in the center of $\mathfrak{w} X_{q}\left(A_{1}\right)$.
(3) If E (resp. F) is of type II, then it enjoys type I.
(4)

$$
\begin{aligned}
& K_{1}^{n} E^{m}=q_{1}^{-m n} E^{m} K_{1}^{n}, K_{1}^{n} F^{m}=q_{1}^{m n} F^{m} K_{1}^{n}, \\
& K_{2}^{n} E^{m}=q_{2}^{m n} E^{m} K_{2}^{n}, K_{2}^{n} F^{m}=q_{2}^{-m n} F^{m} K_{2}^{n}, \\
& \bar{K}_{1}^{n} E^{m}=q_{1}^{m n} E^{m} \bar{K}_{1}^{n}, \bar{K}_{1}^{m} F^{m}=q_{1}^{-m n} F^{m} \bar{K}_{1}^{n}, \\
& \bar{K}_{2}^{n} E^{m}=q_{2}^{-m n} E^{m} \bar{K}_{2}^{n}, \bar{K}_{2}^{n} F^{m}=q_{2}^{m n} F^{m} \bar{K}_{2}^{n} .
\end{aligned}
$$

Proof. (1) Easy.
(2) By definition, we have

$$
K_{i} J=J K_{i}, \bar{K}_{i} J=J \bar{K}_{i}
$$

If E is type I, then

$$
J E=\bar{K}_{1} K_{1} E=q_{1}^{-1} \bar{K}_{1} E K_{1}=q_{1} q_{1}^{-1} E \bar{K}_{1} K_{1}=E J .
$$

If E is type II, then

$$
J E=K_{1} \bar{K}_{1} E=q_{1} K_{1} \bar{K}_{1} K_{1} E \bar{K}_{1}=q_{1} K_{1} E \bar{K}_{1} K_{1} \bar{K}_{1}=E K_{1} \bar{K}_{1}=E J
$$

It is similar to get $J F=F J$. Therefore, J is in the center of $\mathfrak{w} X_{q}\left(A_{1}\right)$.
(3) If E is type II, the relation $K_{1} E \bar{K}_{1}=q_{1}^{-1} E$ implies that $K_{1} E \bar{K}_{1} K_{1}=$ $q_{1}^{-1} E K_{1}$. The left hand side is

$$
K_{1} E J=K_{1} J E=K_{1} E .
$$

Hence, we get $K_{1} E=q_{1}^{-1} E K_{1}$. Similarly, $K_{2} E=q_{2} E K_{2}$.
For the generator F, the statement is similar to prove.
(4) Straightforward.

The concept of weak Hopf algebra was defined by [6], and was studied by [7, 9]. By definition a weak Hopf algebra W is a bialgebra with a weak antipode T such that $T * I d * T=T$ and $I d * T * I d=I d$, where $*$ is the multiplication of convolution algebra $\operatorname{Hom}_{\mathbb{F}}(W, W)$.

In the following, we can equip a coalgebra structure with $\mathfrak{w} X_{q}\left(A_{1}\right)$ such that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra. Indeed, we define the coalgebra structure in $\mathfrak{w} X_{q}\left(A_{1}\right)$ as follows.

The comultiplication $\Delta: \mathfrak{w} X_{q}\left(A_{1}\right) \longrightarrow \mathfrak{w} X_{q}\left(A_{1}\right) \otimes \mathfrak{w} X_{q}\left(A_{1}\right)$ is

$$
\begin{aligned}
& \Delta(J)=J \otimes J, \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, i=1,2 ; \\
& \Delta(E)=\left\{\begin{array}{l}
\left(K_{1} \bar{K}_{2}\right) \otimes E+E \otimes 1, \text { if } E \text { is of type I, } \\
\left(K_{1} \bar{K}_{2}\right) \otimes E+E \otimes J, \text { if } E \text { is of type II; }
\end{array}\right. \\
& \Delta(F)=\left\{\begin{array}{l}
1 \otimes F+F \otimes\left(K_{2} \bar{K}_{1}\right), \text { if } F \text { is of type I, } \\
J \otimes F+F \otimes\left(K_{2} \bar{K}_{1}\right), \text { if } F \text { is of type II. }
\end{array}\right.
\end{aligned}
$$

The counit $\varepsilon: \mathfrak{w} X_{q}\left(A_{1}\right) \longrightarrow \mathbb{F}$ is

$$
\begin{aligned}
& \varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=\varepsilon(J)=1, i=1,2 ; \\
& \varepsilon(E)=\varepsilon(F)=0 .
\end{aligned}
$$

It is obvious that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a coalgebra by the definition of Δ and ε. In fact:
Theorem 1.4. Keeping all notations as above. Then $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra with $J \neq 1$, the comultiplication Δ, counit ε and weak antipode T, but it is not a Hopf algebra.

Proof. Indeed, it is straightforward to see that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a bialgebra (as the proof in [9, Theorem 3.1]). To see that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra, we need to find a weak antipode T such that $T * I d * T=T$ and $I d * T * I d=I d$. For the purpose, we define $T: \mathfrak{w} X_{q}\left(A_{1}\right) \longrightarrow \mathfrak{w} X_{q}\left(A_{1}\right)$ by

$$
\begin{gathered}
T(J)=J, T\left(K_{i}\right)=\bar{K}_{i}, T\left(\bar{K}_{i}\right)=K_{i}, i=1,2 \\
T(E)=-\bar{K}_{1} K_{2} E, T(F)=-F K_{1} \bar{K}_{2}
\end{gathered}
$$

The left is to prove T is an weak antipode of $\mathfrak{w} X_{q}\left(A_{1}\right)$. The proof is more or less the same as that in [9, Theorem 3.1].

We now prove that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is not a Hopf algebra. Otherwise, we assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a Hopf algebra and $S: \mathfrak{w} X_{q}\left(A_{1}\right) \longrightarrow \mathfrak{w} X_{q}\left(A_{1}\right)$ is an antipode. Then $(S * i d)(J)=u \varepsilon(J)=(i d * S)(J)$ implies that $S(J) J=1=J S(J)$. It follows that J is invertible. However, $J(1-J)=0$ and $J \neq 1$. It is contradiction. Therefore, $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra not a Hopf algebra.

2. The PBW basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$

Let $\omega_{q}=\mathfrak{w} X_{q}\left(A_{1}\right) J, \bar{\omega}_{q}=\mathfrak{w} X_{q}\left(A_{1}\right)(J-1)$, we have:
Proposition 2.1. Assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type d. Then $\mathfrak{w} X_{q}\left(A_{1}\right)=\omega_{q} \oplus$ $\bar{\omega}_{q}$ as algebras. Furthermore, ω_{q} and $X_{q}\left(A_{1}\right)$ are isomorphic as Hopf algebras.
Proof. It is easy to see that

$$
\mathfrak{w} X_{q}\left(A_{1}\right)=\omega_{q} \oplus \bar{\omega}_{q}
$$

as algebras for J is a center idempotent element. Consider the algebra ω_{q}, it can be viewed as an algebra generated by $E J, F J, K_{1}, K_{2}, \bar{K}_{1}, \bar{K}_{2}$, satisfying the following relations:

$$
\begin{gathered}
K_{1} K_{2}=K_{2} K_{1}, \bar{K}_{1} \bar{K}_{2}=\bar{K}_{2} \bar{K}_{1}, K_{i} \bar{K}_{j}=\bar{K}_{j} K_{i}, i, j=1,2, \\
K_{1} \bar{K}_{1}=J=K_{2} \bar{K}_{2}, K_{i} J=J K_{i}=K_{i}, \bar{K}_{i} J=J \bar{K}_{i}=\bar{K}_{i}, i=1,2, \\
K_{1} E J=q_{1}^{-1} E J K_{1}, K_{1} F J=q_{1} F J K_{1}, \\
K_{2} E J=q_{2} E J K_{2}, K_{2} F J=q_{2}^{-1} F J K_{2}, \\
\bar{K}_{1} E J=q_{1} E J \bar{K}_{1}, \bar{K}_{1} F J=q_{1}^{-1} F J \bar{K}_{1}, \\
\bar{K}_{2} E J=q_{2}^{-1} E J \bar{K}_{2}, \bar{K}_{2} F J=q_{2} F J \bar{K}_{2}, \\
\\
(E J)^{2}=(F J)^{2}=0, \\
\\
(E J)(F J)-(F J)(E J)=\frac{K_{2} \bar{K}_{1}-K_{1} \bar{K}_{2}}{q-q^{-1}},
\end{gathered}
$$

where J is the identity of ω_{q}. By the comultiplication of $\mathfrak{w} X_{q}\left(A_{1}\right)$, it is deduced in $\mathfrak{w} X_{q}\left(A_{1}\right)$ that

$$
\begin{aligned}
& \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, i=1,2, \\
& \Delta(E J)=\left(K_{1} \bar{K}_{2}\right) \otimes E J+E J \otimes J, \\
& \Delta(F J)=J \otimes F J+F J \otimes\left(K_{2} \bar{K}_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=\varepsilon(J)=1, i=1,2, \varepsilon(E J)=\varepsilon(F J)=0, \\
& T(J)=J, T\left(K_{i}\right)=\bar{K}_{i}, T\left(\bar{K}_{i}\right)=K_{i}, i=1,2, \\
& T(E J)=-\bar{K}_{1} K_{2}(E J), T(F J)=-(F J) K_{1} \bar{K}_{2} .
\end{aligned}
$$

Let $\rho: X_{q}\left(A_{1}\right) \longrightarrow \omega_{q}$ be the map defined by

$$
\rho\left(K_{i}^{\prime}\right)=K_{i}, \rho\left(K_{i}^{\prime-1}\right)=\bar{K}_{i}, i=1,2, \rho\left(E^{\prime}\right)=E J, \rho\left(F^{\prime}\right)=F J,
$$

where $K_{i}^{\prime}, K_{i}^{-1}(i=1,2), E^{\prime}$, and F^{\prime} are the generators of $X_{q}\left(A_{1}\right)$. It is straightforward to see that ρ is a well-defined surjective algebra homomorphism.

Let $\phi: \mathfrak{w} X_{q}\left(A_{1}\right) \longrightarrow X_{q}\left(A_{1}\right)$ be a map given by

$$
\phi(1)=1, \phi(J)=1, \phi(E)=E, \phi(F)=F, \phi\left(K_{i}\right)=K_{i}, \phi\left(\bar{K}_{i}\right)=K_{i}^{-1} .
$$

We can check that ϕ is a well-defined algebra homomorphism. If we consider the restricted homomorphism $\left.\phi\right|_{\omega_{q}}$, then we have $\left.\phi\right|_{\omega_{q}} \circ \rho=i d_{X_{q}\left(A_{1}\right)}$. Hence ρ is injective. Therefore, $\omega_{q} \cong X_{q}\left(A_{1}\right)$.

It is noted that

$$
\mathfrak{w} X_{q}\left(A_{1}\right) /\langle J-1\rangle \cong X_{q}\left(A_{1}\right)
$$

as Hopf algebras, where $\langle J-1\rangle$ is the two-sided ideal generated by $J-1$ (see the proof of Proposition 2.1).

Let us describe the structure of $\bar{\omega}_{q}$.

- If E (resp. F) is of type II, then $E(1-J)=0$ (resp. $F(1-J)=0$). Indeed, if E is of type II, then $q_{1}^{-1} E=K_{1} E \bar{K}_{1}=K_{1} E \bar{K}_{1} J=q_{1}^{-1} E J$ and $E(1-J)=0$. Similarly for F.
- If $E($ resp. $F)$ is of type I, then $E(1-J) \neq 0($ resp. $F(1-J) \neq 0)$. To see this, if E and F are of type $d=(1 \mid 1)$, we apply the actions of $E(1-J)$ and $F(1-J)$ on the $\mathfrak{w} X_{q}\left(A_{1}\right)$-module $M(1,1)$ in Section 4, we have $E(1-J) X^{0} Y^{0}=X^{1} Y^{0} \neq 0$ and $F(1-J) X^{0} Y^{0}=X^{0} Y^{1} \neq 0$. Hence $E(1-J) \neq 0$ and $F(1-J) \neq 0$.
If E (resp. F) is of type I, we assume $X=E(1-J)($ resp. $Y=F(1-J)$). There are the following four cases.
(1) If $d=(1 \mid 1)$, then $\bar{\omega}_{q}=\mathbb{F} X+\mathbb{F} Y+\mathbb{F} X Y+\mathbb{F}(1-J)$. It is easy to see that $X Y=Y X$;
(2) If $d=(0 \mid 0)$, then $\bar{\omega}_{q}=\mathbb{F}(1-J)$;
(3) If $d=(1 \mid 0)$, then $\bar{\omega}_{q}=\mathbb{F} X+\mathbb{F}(1-J)$;
(4) If $d=(0 \mid 1)$, then $\bar{\omega}_{q}=\mathbb{F} Y+\mathbb{F}(1-J)$.

Let $X_{q}^{+}\left(A_{1}\right)$ (resp. $X_{q}^{-}\left(A_{1}\right)$, and $\left.X_{q}^{0}\left(A_{1}\right)\right)$ be the subalgebra generated by E (resp. F, and $K_{1}^{ \pm 1}, K_{2}^{ \pm 1}$). Considering the $X_{q}^{+}\left(A_{1}\right)$-module V with basis $\left\{v_{0}, v_{1}\right\}$, defined by $E v_{0}=0, E v_{1}=v_{0}, 1 v_{i}=v_{i}(i=0,1)$, accordingly we have $\{1, E\}$ is a basis of $X_{q}^{+}\left(A_{1}\right)$. Similarly, $\{1, F\}$ is a basis of $X_{q}^{-}\left(A_{1}\right)$. On the other hand, $X_{q}^{0}\left(A_{1}\right) \cong \mathbb{F}\left[K_{1}^{ \pm 1}, K_{2}^{ \pm 1}\right]$ as \mathbb{F}-algebras, where $\mathbb{F}\left[K_{1}^{ \pm 1}, K_{2}^{ \pm 1}\right]$ is
the algebra of Laurent polynomials. Hence, $\left\{K_{1}^{m} K_{2}^{n} \mid m, n \in \mathbb{Z}\right\}$ is a basis of $X_{q}^{0}\left(A_{1}\right)$. Moreover, one has

$$
X_{q}\left(A_{1}\right) \cong X_{q}^{-}\left(A_{1}\right) \otimes X_{q}^{0}\left(A_{1}\right) \otimes X_{q}^{+}\left(A_{1}\right)
$$

To see these, one can refer to the statements of [3, Lemma 4.14-Theorem 4.21]. We set

$$
P_{i}^{s_{i}}= \begin{cases}K_{i}^{s_{i}}, & \text { if } s_{i}>0 \tag{2.1}\\ J, & \text { if } s_{i}=0 \\ \bar{K}_{i}^{-s_{i}}, & \text { if } s_{i}<0\end{cases}
$$

We denote $P^{s}=P_{1}^{s_{1}} P_{2}^{s_{2}}$ if $s=\left(s_{1}, s_{2}\right)$. It is easy to see P^{s} is the basis of ω_{q}^{0}.

By Proposition 2.1, we have:
Proposition 2.2. Assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type d. Then the set
$\left\{F^{b} P^{s} E^{a} J \mid s=\left(s_{1}, s_{2}\right) \in \mathbb{Z} \times \mathbb{Z}\right.$, and $\left.a, b \in \mathbb{Z}_{2}\right\} \bigcup\left\{0 \neq F^{b} E^{a}(1-J) \mid a, b \in \mathbb{Z}_{2}\right\}$
forms a basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$.

3. The isomorphisms among weak quantum algebras

We assume that $X_{p}\left(A_{1}\right)$ is generated by $E^{\prime}, F^{\prime}, K_{i}^{\prime}, K_{i}^{\prime-1}, i=1,2$. The defining relations and comultiplications of $X_{p}\left(A_{1}\right)$ are the same as those of $X_{q}\left(A_{1}\right)$ replaced q by p.

In this section, we give the sufficient and necessary conditions as weak Hopf algebra isomorphisms between $\mathfrak{w} X_{q}\left(A_{1}\right)$ and $\mathfrak{w} X_{p}\left(A_{1}\right)$.

In first, we recall some concepts about group-like elements and primitive elements of a coalgebra.

Let C be a coalgebra, $x \in C$. If $\Delta(x)=x \otimes x$, and $\epsilon(x)=1$, then x is called a group-like element in C. Let $G(C)$ denote the set of group-like elements. Let $g, h \in G(C)$. If

$$
\Delta(x)=g \otimes x+x \otimes h
$$

then x is called a $(g: h)$-primitive element. Let $P_{g, h}(C)$ denote the space consisting of $(g: h)$-primitive elements.
Lemma 3.1. The space of $\left(K_{1}^{l_{1}} K_{2}^{l_{2}}: 1\right)$-primitive elements of $X_{q}\left(A_{1}\right)$ is $P_{K_{1}^{l_{1}} K_{2}^{l_{2}, 1}}\left(X_{q}\left(A_{1}\right)\right)=\left\{\begin{array}{l}\mathbb{F} E+\mathbb{F} F K_{1} K_{2}^{-1}+\mathbb{F}\left(1-K_{1} K_{2}^{-1}\right), \text { if } l_{1}=1, l_{2}=-1, \\ \mathbb{F}\left(1-K_{1}^{l_{1}} K_{2}^{l_{2}}\right), \text { others. }\end{array}\right.$
Proof. Assume that $x \in X_{q}\left(A_{1}\right)$ is a $\left(K_{1}^{l_{1}} K_{2}^{l_{2}}: 1\right)$-primitive element, then

$$
\Delta(x)=K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes x+x \otimes 1
$$

We suppose that

$$
x=\sum_{i, j \in \mathbb{Z}_{2}, m_{1}, m_{2}} a_{i, j, m_{1}, m_{2}} E^{i} F^{j} K_{1}^{m_{1}} K_{2}^{m_{2}}
$$

we have

$$
\begin{aligned}
\Delta(x)= & \Delta\left(\sum_{i, j, m_{1}, m_{2}} a_{i, j, m_{1}, m_{2}} E^{i} F^{j} K_{1}^{m_{1}} K_{2}^{m_{2}}\right) \\
= & \sum_{m_{1}, m_{2}} a_{0,0, m_{1}, m_{2}} K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& +\sum_{m_{1}, m_{2}} a_{1,0, m_{1}, m_{2}}\left(K_{1}^{m_{1}+1} K_{2}^{m_{2}-1} \otimes E K_{1}^{m_{1}} K_{2}^{m_{2}}+E K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes K_{1}^{m_{1}} K_{2}^{m_{2}}\right) \\
& +\sum_{m_{1}, m_{2}} a_{0,1, m_{1}, m_{2}}\left(K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes F K_{1}^{m_{1}} K_{2}^{m_{2}}+F K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes K_{1}^{m_{1}-1} K_{2}^{m_{2}+1}\right) \\
& +\sum_{m_{1}, m_{2}} a_{1,1, m_{1}, m_{2}}\left(K_{1}^{m_{1}+1} K_{2}^{m_{2}-1} \otimes E F K_{1}^{m_{1}} K_{2}^{m_{2}}\right. \\
& +K_{1} K_{2}^{-1} F K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes E K_{1}^{m_{1}-1} K_{2}^{m_{2}+1} \\
& \left.+E K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes F K_{1}^{m_{1}} K_{2}^{m_{2}}+E F K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes K_{1}^{m_{1}-1} K_{2}^{m_{2}+1}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{align*}
K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes x+x \otimes 1= & K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes \sum a_{0,0, m_{1}, m_{2}} K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& +K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes \sum a_{1,0, m_{1}, m_{2}} E K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& +K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes \sum a_{0,1, m_{1}, m_{2}} F K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& +K_{1}^{l_{1}} K_{2}^{l_{2}} \otimes \sum a_{1,1, m_{1}, m_{2}} E F K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& +\sum a_{0,0, m_{1}, m_{2}} K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes 1 \\
& +\sum a_{1,0, m_{1}, m_{2}} E K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes 1 \\
& +\sum a_{0,1, m_{1}, m_{2}} F K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes 1 \\
& +\sum a_{1,1, m_{1}, m_{2}} E F K_{1}^{m_{1}} K_{2}^{m_{2}} \otimes 1 . \tag{3.2}
\end{align*}
$$

Comparing the equations (3.1) and (3.2), we have if $l_{1}=1$ and $l_{2}=-1$, then x can be written as

$$
a E+b F K_{1} K_{2}^{-1}+c\left(1-K_{1} K_{2}^{-1}\right), a, b, c \in \mathbb{F}
$$

If $l_{1} \neq 1$ or $l_{2} \neq-1$, then x can be written as

$$
x=d\left(1-K_{1}^{l_{1}} K_{2}^{l_{2}}\right), d \in \mathbb{F}
$$

Therefore, we finish the proof.

We now give the first main result.
Proposition 3.2. $X_{p}\left(A_{1}\right) \cong X_{q}\left(A_{1}\right)$ as Hopf algebras if and only if $p= \pm q^{ \pm 1}$.

Proof. (\Rightarrow) Let $\phi: X_{p}\left(A_{1}\right) \longrightarrow X_{q}\left(A_{1}\right)$ be a Hopf algebra isomorphism. Then ϕ must map group-like elements to group-like elements. Therefore we can assume that

$$
\phi\left(K_{1}^{\prime}\right)=K_{1}^{m_{1}} K_{2}^{m_{2}}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{n_{1}} K_{2}^{n_{2}} .
$$

Then we have

$$
\begin{aligned}
\Delta\left(\phi\left(E^{\prime}\right)\right) & =(\phi \otimes \phi)\left(\Delta\left(E^{\prime}\right)\right)=\phi\left(K_{1}^{\prime} K_{2}^{\prime-1}\right) \otimes \phi\left(E^{\prime}\right)+\phi\left(E^{\prime}\right) \otimes 1 \\
& =K_{1}^{m_{1}-n_{1}} K_{2}^{m_{2}-n_{2}} \otimes \phi\left(E^{\prime}\right)+\phi\left(E^{\prime}\right) \otimes 1
\end{aligned}
$$

So $\phi\left(E^{\prime}\right)$ is a $\left(K_{1}^{m_{1}-n_{1}} K_{2}^{m_{2}-n_{2}}: 1\right)$-primitive element. By Lemma 3.1, if $m_{1}-$ $n_{1} \neq 1$, or $m_{2}-n_{2} \neq-1$, we can assume $\phi\left(E^{\prime}\right)=d\left(1-K_{1}^{m_{1}-n_{1}} K_{2}^{m_{2}-n_{2}}\right) \neq 0$. This contradicts to the fact that $\phi\left(K_{1}^{\prime}\right) \phi\left(E^{\prime}\right)=p^{-1} \phi\left(E^{\prime}\right) \phi\left(K_{1}^{\prime}\right)$.

Now, we focus on $m_{1}-n_{1}=1, m_{2}-n_{2}=-1$. By Lemma 3.1, we can assume that

$$
\phi\left(E^{\prime}\right)=a E+b F K_{1} K_{2}^{-1}+c\left(1-K_{1} K_{2}^{-1}\right) .
$$

Applying the algebra isomorphism ϕ to the relation $K_{1}^{\prime} E^{\prime}=p^{-1} E^{\prime} K_{1}^{\prime}$, we get

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right) \phi\left(E^{\prime}\right)= K_{1}^{m_{1}} K_{2}^{m_{2}}\left(a E+b F K_{1} K_{2}^{-1}+c\left(1-K_{1} K_{2}^{-1}\right)\right) \\
&= a K_{1}^{m_{1}} K_{2}^{m_{2}} E+b K_{1}^{m_{1}} K_{2}^{m_{2}} F K_{1} K_{2}^{-1} \\
&+c K_{1}^{m_{1}} K_{2}^{m_{2}}\left(1-K_{1} K_{2}^{-1}\right) \\
&=(-1)^{-m_{2}} a q^{-m_{1}-m_{2}} E K_{1}^{m_{1}} K_{2}^{m_{2}} \\
&+(-1)^{m_{2}} b q^{m_{1}+m_{2}} F K_{1}^{m_{1}+1} K_{2}^{m_{2}-1} \\
&+c K_{1}^{m_{1}} K_{2}^{m_{2}}\left(1-K_{1} K_{2}^{-1}\right), \\
& p^{-1} \phi\left(E^{\prime}\right) \phi\left(K_{1}^{\prime}\right)= K_{1}^{m_{1}} K_{2}^{m_{2}}\left(a E+b F K_{1} K_{2}^{-1}+c\left(1-K_{1} K_{2}^{-1}\right)\right) \\
&= p^{-1}\left(a E+b F K_{1} K_{2}^{-1}+c\left(1-K_{1} K_{2}^{-1}\right)\right) K_{1}^{m_{1}} K_{2}^{m_{2}} \\
&= p^{-1} a E K_{1}^{m_{1}} K_{2}^{m_{2}}+p^{-1} b F K_{1}^{m_{1}+1} K_{2}^{m_{2}-1} \\
&+p^{-1} c\left(1-K_{1} K_{2}^{-1}\right) K_{1}^{m_{1}} K_{2}^{m_{2}} \\
& \Longrightarrow \quad(-1)^{-m_{2}} a q^{-m_{1}-m_{2}}=p^{-1} a,(-1)^{m_{2}} b q^{m_{1}+m_{2}}=p^{-1} b, c=p^{-1} c .
\end{aligned}
$$

Hence $c=0$ since p and q are not a root of unity.
(1) If $a \neq 0$, then

$$
(-1)^{m_{2}} q^{m_{1}+m_{2}}=p, b=0, \phi\left(E^{\prime}\right)=a E
$$

Let us determine $\phi\left(F^{\prime}\right)$ as follows. Since $F^{\prime} K_{1}^{\prime} K_{2}^{\prime-1}$ is a $\left(K_{1}^{\prime} K_{2}^{\prime-1}: 1\right)$-primitive element, we can assume that

$$
\phi\left(F^{\prime} K_{1}^{\prime} K_{2}^{\prime-1}\right)=a^{\prime} E+b^{\prime} F K_{1} K_{2}^{-1}+c^{\prime}\left(1-K_{1} K_{2}^{-1}\right)=\phi\left(F^{\prime}\right) K_{1} K_{2}^{-1}
$$

This implies that

$$
\phi\left(F^{\prime}\right)=b^{\prime} F K_{1}^{1-\left(m_{1}-n_{1}\right)} K_{2}^{-1-\left(m_{2}-n_{2}\right)}=b^{\prime} F
$$

by the defining relations. Moreover, applying ϕ to the relation

$$
E^{\prime} F^{\prime}-F^{\prime} E^{\prime}=\frac{K_{2}^{\prime} K_{1}^{\prime-1}-K_{1}^{\prime} K_{2}^{\prime-1}}{p-p^{-1}}
$$

we get that

$$
b^{\prime}=\frac{q-q^{-1}}{a\left(p-p^{-1}\right)}, \text { and that } \phi\left(F^{\prime}\right)=\frac{q-q^{-1}}{a\left(p-p^{-1}\right)} F \text {. }
$$

Therefore, we may assume that

$$
m_{1}+m_{2}=n_{1}+n_{2}=l, m_{2}=m .
$$

Then $(-1)^{m} q^{l}=p$, the corresponding isomorphism has the form

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{l-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{l-m-1} K_{2}^{m+1}, \\
& \phi\left(E^{\prime}\right)=a E, \phi\left(F^{\prime}\right)=\frac{q-q^{-1}}{a\left(p-p^{-1}\right)} F,(a \neq 0) .
\end{aligned}
$$

This isomorphism forces that there are $a, b \in \mathbb{Z}$ such that

$$
\phi\left({K_{1}^{\prime a}}^{a}\right) \phi\left({K_{2}^{\prime b}}^{b}\right)=K_{1} \text { or } \phi\left({K_{1}^{\prime a}}^{\prime a}\right) \phi\left({K_{2}^{\prime b}}^{b}\right)=K_{2} .
$$

It concludes that $a(l-m)+b(l-m-1)=1, a m+b(m+1)=0$ or $a(l-$ $m)+b(l-m-1)=0, a m+b(m+1)=1$. For the first case, we have $l=1$, $a=1+m, b=-m$, or $l=-1, a=-1-m, b=m$. For the last case, we have $l=1, a=m, b=1-m$, or $l=-1, a=-2-m, b=m+1$. Therefore $p=(-1)^{m} q^{ \pm 1}$.

If $p=(-1)^{m} q$, then we get the weak Hopf algebra isomorphism

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{1-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{-m} K_{2}^{m+1} \\
& \phi\left(E^{\prime}\right)=a E, \phi\left(F^{\prime}\right)=(-1)^{m} a^{-1} F,(a \neq 0)
\end{aligned}
$$

The inverse ϕ^{\prime} of ϕ is

$$
\begin{aligned}
& \phi^{\prime}\left(K_{1}\right)=\left(K_{1}^{\prime}\right)^{1+m}\left(K_{2}^{\prime}\right)^{-m}, \phi^{\prime}\left(K_{2}\right)=\left(K_{1}^{\prime}\right)^{m}\left(K_{2}^{\prime}\right)^{1-m}, \\
& \phi^{\prime}(E)=a^{-1} E^{\prime}, \phi^{\prime}(F)=(-1)^{m} a F^{\prime} .
\end{aligned}
$$

If $p=(-1)^{m} q^{-1}$, then we get the weak Hopf algebra isomorphism

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{-1-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{-2-m} K_{2}^{m+1}, \\
& \phi\left(E^{\prime}\right)=a E, \phi\left(F^{\prime}\right)=(-1)^{m+1} a^{-1} F,(a \neq 0)
\end{aligned}
$$

The inverse ϕ^{\prime} of ϕ is

$$
\begin{aligned}
& \phi^{\prime}\left(K_{1}\right)=\left(K_{1}^{\prime}\right)^{-1-m}\left(K_{2}^{\prime}\right)^{m}, \phi^{\prime}\left(K_{2}\right)=\left(K_{1}^{\prime}\right)^{-2-m}\left(K_{2}^{\prime}\right)^{m+1}, \\
& \phi^{\prime}(E)=a^{-1} E^{\prime}, \phi^{\prime}(F)=(-1)^{m+1} a F^{\prime} .
\end{aligned}
$$

(2) If $b \neq 0$, then

$$
(-1)^{m_{2}} q^{m_{1}+m_{2}}=p^{-1}, a=0, \phi\left(E^{\prime}\right)=b F K_{1} K_{2}^{-1} .
$$

We assume that

$$
\phi\left(F^{\prime} K_{1}^{\prime} K_{2}^{\prime-1}\right)=a^{\prime} E+b^{\prime} F K_{1} K_{2}^{-1}+c^{\prime}\left(1-K_{1} K_{2}^{-1}\right) .
$$

By the defining relations and more or less than the above discussion, we have

$$
\phi\left(F^{\prime}\right)=a^{\prime} E K_{1}^{-1} K_{2} .
$$

In fact,

$$
a^{\prime}=\frac{q-q^{-1}}{b\left(p-p^{-1}\right)}
$$

by applying the isomorphism ϕ to the relation

$$
E^{\prime} F^{\prime}-F^{\prime} E^{\prime}=\frac{K_{2}^{\prime} K_{1}^{\prime-1}-K_{1}^{\prime} K_{2}^{\prime-1}}{p-p^{-1}}
$$

Therefore, we have that in this case

$$
\phi\left(F^{\prime}\right)=\frac{q-q^{-1}}{b\left(p-p^{-1}\right)} K_{1}^{-1} K_{2} E .
$$

Let $m_{1}+m_{2}=l, m_{2}=m$, then $p=(-1)^{m} q^{-l}$, the corresponding isomorphism

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{l-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{l-m-1} K_{2}^{m+1} \\
& \phi\left(E^{\prime}\right)=b F K_{1} K_{2}^{-1}, \phi\left(F^{\prime}\right)=\frac{q-q^{-1}}{b\left(p-p^{-1}\right)} E K_{1}^{-1} K_{2},(b \neq 0) .
\end{aligned}
$$

The similar arguments as the case (1) show that $p=(-1)^{m} q^{ \pm 1}$.
If $p=(-1)^{m} q$, we get the weak Hopf algebra isomorphism

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{-1-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{-2-m} K_{2}^{m+1} \\
& \phi\left(E^{\prime}\right)=b F K_{1} K_{2}^{-1}, \phi\left(F^{\prime}\right)=(-1)^{m} b^{-1} E K_{1}^{-1} K_{2},(b \neq 0) .
\end{aligned}
$$

The inverse ϕ^{\prime} of ϕ is

$$
\begin{aligned}
& \phi^{\prime}\left(K_{1}\right)=\left(K_{1}^{\prime}\right)^{-1-m}\left(K_{2}^{\prime}\right)^{m}, \phi^{\prime}\left(K_{2}\right)=\left(K_{1}^{\prime}\right)^{-2-m}\left(K_{2}^{\prime}\right)^{m+1} \\
& \phi^{\prime}(E)=(-1)^{m} b F^{\prime} K_{1}^{\prime}\left(K_{2}^{\prime}\right)^{-1}, \phi^{\prime}(F)=b^{-1} E^{\prime}\left(K_{1}^{\prime}\right)^{-1} K_{2}^{\prime}
\end{aligned}
$$

If $p=(-1)^{m} q^{-1}$, then we get the weak Hopf algebra isomorphism

$$
\begin{aligned}
& \phi\left(K_{1}^{\prime}\right)=K_{1}^{1-m} K_{2}^{m}, \phi\left(K_{2}^{\prime}\right)=K_{1}^{-m} K_{2}^{m+1}, \\
& \phi\left(E^{\prime}\right)=b F K_{1} K_{2}^{-1}, \phi\left(F^{\prime}\right)=(-1)^{m+1} b^{-1} E K_{1}^{-1} K_{2},(b \neq 0) .
\end{aligned}
$$

The inverse ϕ^{\prime} of ϕ is

$$
\begin{aligned}
& \phi^{\prime}\left(K_{1}\right)=\left(K_{1}^{\prime}\right)^{1+m}\left(K_{2}^{\prime}\right)^{-m}, \phi^{\prime}\left(K_{2}\right)=\left(K_{1}^{\prime}\right)^{m}\left(K_{2}^{\prime}\right)^{1-m} \\
& \phi^{\prime}(E)=(-1)^{m+1} b F^{\prime} K_{1}^{\prime}\left(K_{2}^{\prime}\right)^{-1}, \phi^{\prime}(F)=b^{-1} E^{\prime}\left(K_{1}^{\prime}\right)^{-1} K_{2}^{\prime}
\end{aligned}
$$

(\Leftarrow) If $p= \pm q^{ \pm 1}$, we can assume that $p=(-1)^{m} q^{n}(n= \pm 1)$ and define the $\operatorname{map} \psi: X_{p}\left(A_{1}\right) \longrightarrow X_{q}\left(A_{1}\right)$ as

$$
\begin{aligned}
& \psi\left(K_{1}^{\prime}\right)=K_{1}^{n-m} K_{2}^{m}, \psi\left(K_{2}^{\prime}\right)=K_{1}^{n-m-1} K_{2}^{m+1} \\
& \psi\left(E^{\prime}\right)=a E, \psi\left(F^{\prime}\right)=(-1)^{m+\delta_{-1, n}} a^{-1} F
\end{aligned}
$$

where

$$
\delta_{-1, n}= \begin{cases}1, & \text { if } n=-1 \\ 0, & \text { if } n \neq-1\end{cases}
$$

It is easy to see that ψ is a Hopf algebra isomorphism.

Recall that

$$
\mathfrak{w} X_{q}\left(A_{1}\right) \cong \omega_{q} \oplus \bar{\omega}_{q} .
$$

Let us consider the weak Hopf algebra isomorphism between $\mathfrak{w} X_{q}\left(A_{1}\right)$ and $\mathfrak{w} X_{p}\left(A_{1}\right)$.

Theorem 3.3. For the weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ of type (1|1), we have $\mathfrak{w} X_{p}\left(A_{1}\right) \cong \mathfrak{w} X_{q}\left(A_{1}\right)$ as weak Hopf algebras if and only if $p= \pm q^{ \pm 1}$.

Proof. Let $\gamma: \mathfrak{w} X_{p}\left(A_{1}\right) \longrightarrow \mathfrak{w} X_{q}\left(A_{1}\right)$ be an isomorphism of weak Hopf algebra. It is easy to see that $\gamma\left(J^{\prime}\right)=J$ since γ sends group-likes to group-likes.

By Proposition 2.1 it is well-known that

$$
\mathfrak{w} X_{p}\left(A_{1}\right)=w_{p} \oplus \bar{w}_{p}, \mathfrak{w} X_{q}\left(A_{1}\right)=w_{q} \oplus \bar{w}_{q}
$$

and $w_{p} \cong X_{p}\left(A_{1}\right), w_{q} \cong X_{q}\left(A_{1}\right)$. Note that \bar{w}_{p} is spanned by $\left\{E^{\prime i} F^{\prime j}(1-\right.$ $J) \mid i, j=0,1\}$, and \bar{w}_{q} is spanned by $\left\{E^{i} F^{j}(1-J) \mid i, j=0,1\right\}$.

Assume that $\operatorname{inj}_{p}: w_{p} \longrightarrow \mathfrak{w} X_{p}\left(A_{1}\right)$ is defined by

$$
J^{\prime} \longmapsto J^{\prime}, E^{\prime} J^{\prime} \longmapsto E^{\prime} J^{\prime}, F^{\prime} J^{\prime} \longmapsto F^{\prime} J^{\prime}, K_{i}^{\prime} \longmapsto K_{i}^{\prime},{\overline{K^{\prime}}}_{i} \longmapsto{\overline{K^{\prime}}}_{i}, i=1,2 .
$$

It is easy to see that inj_{p} is a bialgebra homomorphism (see [8]). Moreover, we have $w_{q}=\gamma \circ \operatorname{inj}_{p}\left(w_{p}\right)$. Since $\mathfrak{w} X_{p}\left(A_{1}\right) \cong \mathfrak{w} X_{q}\left(A_{1}\right)$, it follows that $X_{p}\left(A_{1}\right) \cong$ $X_{q}\left(A_{1}\right)$. By Proposition 3.2, $p= \pm q^{ \pm 1}$.
(\Leftarrow) Assume that $p= \pm q^{ \pm 1}$. Without loss of generality, we assume that $p=(-1)^{m} q^{n}(n= \pm 1)$ and define the map $\gamma: \mathfrak{w} X_{p}\left(A_{1}\right) \longrightarrow \mathfrak{w} X_{q}\left(A_{1}\right)$ as follows

$$
\begin{aligned}
& \gamma(1)=1, \gamma\left(J^{\prime}\right)=J \\
& \gamma\left(P_{1}^{\prime}\right)=P_{1}^{n-m} P_{2}^{m}, \gamma\left(P_{2}^{\prime}\right)=P_{1}^{n-m-1} P_{2}^{m+1} \\
& \gamma\left(E^{\prime}\right)=E, \gamma\left(F^{\prime}\right)=(-1)^{m+\delta_{-1, n}} F,
\end{aligned}
$$

where P_{i} and P_{i}^{\prime} are defined by (2.1) respectively. It is straightforward to see that γ indeed can be extended to a weak Hopf algebra isomorphism.

The proof is finished.

Remark 3.4. In general, if E, F are of type (1|0), (0|1), or ($0 \mid 0$), more or less the same arguments show that Theorem 3.3 also hold.

4. The representations of $\mathfrak{v} X_{q}\left(A_{1}\right)$

In this section, we consider the representation theory of $\mathfrak{w} X_{q}\left(A_{1}\right)$ of type d.
Let V be a $\mathfrak{w} X_{q}\left(A_{1}\right)$-module and $0 \neq v \in V$. If $K_{1} v=\lambda_{1} v, K_{2} v=\lambda_{2} v$, then $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$ is called a weight of V and v is called a weight vector. The subspace

$$
\{0\} \neq V_{\lambda}=\left\{v \in V \mid K_{1} v=\lambda_{1} v, K_{2} v=\lambda_{2} v\right\}
$$

is called a weight space of $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$. If

$$
E v=0, K_{1} v=\lambda_{1} v, K_{2} v=\lambda_{2} v
$$

then v is called a highest weight vector of $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$. If $V=\mathfrak{w} X_{q}\left(A_{1}\right) v$ and v is a highest weight vector, then V is called a highest weight module of $\mathfrak{w} X_{q}\left(A_{1}\right)$ generated by the highest weight vector v.
Lemma 4.1. Let $\mathfrak{w} X_{q}\left(A_{1}\right)$ be the weak Hopf algebra of type d, V be a $\mathfrak{w} X_{q}\left(A_{1}\right)$ module and $0 \neq v \in V$. If $K_{i} v=\lambda_{i} v, i=1,2, \lambda_{i} \in \mathbb{F}$, then there are elements $\bar{\lambda}_{i} \in \mathbb{F}$ such that $\bar{K}_{i} v=\bar{\lambda}_{i} v$. Moreover, if $\lambda_{i} \neq 0$, then $\bar{\lambda}_{i}=\lambda_{i}^{-1}$; if $\lambda_{i}=0$, then $\bar{\lambda}_{i}=0$.

Proof. Since $K_{i} v=\lambda_{i} v$, we have $K_{i} v=K_{i} \bar{K}_{i} K_{i} v=\bar{K}_{i} \lambda_{i}^{2} v=\lambda_{i} v$. Therefore, if $\lambda_{i} \neq 0, \bar{K}_{i} v=\lambda_{i}^{-1} v$. If $\lambda_{i}=0$, then $\bar{K}_{i} v=\bar{K}_{i} K_{i} \bar{K}_{i} v=0$. Hence $\bar{\lambda}_{i}=0$.

Assume that $\left(\lambda_{1}, \lambda_{2}, \delta\right) \in \mathbb{F}^{*} \times \mathbb{F}^{*} \times\{0,1\}, \mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$, where

$$
\delta= \begin{cases}1, & \text { if } \lambda_{1}^{2}=\lambda_{2}^{2} \\ 0, & \text { if } \lambda_{1}^{2} \neq \lambda_{2}^{2}\end{cases}
$$

Suppose $\lambda_{1} \lambda_{2} \neq 0$ let $V_{\lambda_{1}, \lambda_{2}, \delta}(n)(n=0,1)$ be the $(n+1)$-dimensional vector space with the basis $\left\{v_{i} \mid 0 \leq i \leq n\right\}$. The module structure of $V_{\lambda_{1}, \lambda_{2}, \delta}(0)$ is a one-dimensional highest weight $\mathfrak{w} X_{q}\left(A_{1}\right)$-module with $\delta=1$ and relations

$$
E v_{0}=F v_{0}=0, K_{i} v_{0}=\lambda_{i} v_{0}, \bar{K}_{i} v_{0}=\bar{\lambda}_{i} v_{0}, i=1,2
$$

The module structure of $V_{\lambda_{1}, \lambda_{2}, \delta}(1)$ is defined by

$$
\begin{gathered}
K_{1} v_{0}=\lambda_{1} v_{0}, \bar{K}_{1} v_{0}=\bar{\lambda}_{1} v_{0}, K_{2} v_{0}=\lambda_{2} v_{0}, \bar{K}_{2} v_{0}=\bar{\lambda}_{2} v_{0} \\
K_{1} v_{1}=q \lambda_{1} v_{1}, \bar{K}_{1} v_{1}=q^{-1} \bar{\lambda}_{1} v_{1}, K_{2} v_{1}=-q \lambda_{2} v_{1}, \bar{K}_{2} v_{1}=-q^{-1} \bar{\lambda}_{2} v_{1}, \\
E v_{0}=0, E v_{1}=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0}, \\
F v_{0}=v_{1}, F v_{1}=0 . \\
\text { In fact, when } \lambda_{1} \lambda_{2} \neq 0 \text {, we have } \bar{\lambda}_{1} \lambda_{2}=\lambda_{1} \bar{\lambda}_{2} \Leftrightarrow \lambda_{1}^{2}=\lambda_{2}^{2} .
\end{gathered}
$$

Lemma 4.2. Assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is the weak Hopf algebra of any type d and $\lambda_{1} \lambda_{2} \neq 0$. Let V be a highest weight $\mathfrak{w} X_{q}\left(A_{1}\right)$-module generated by a highest weight vector v_{0} with weight $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$. Then
(1) $V \cong V_{\lambda_{1}, \lambda_{2}, \delta}(n)(n=0,1)$;
(2) $V_{\lambda_{1}, \lambda_{2}, \delta}(n) \cong V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(n)(n=0,1)$ as $\mathfrak{w} X_{q}\left(A_{1}\right)$-modules if and only if $\left(\lambda_{1}, \lambda_{2}, \delta\right)=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}\right)$.

Proof. Straightforward.
Assume that $\lambda_{1} \lambda_{2}=0$ and $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra of type $d=(0 \mid 1)$ or $(1 \mid 1)$. Let $W(n)(n=0,1)$ be the $(n+1)$-dimensional vector space with the basis $\left\{w_{i} \mid 0 \leq i \leq n\right\}$. It is noted that if $\lambda_{1} \lambda_{2}=0$ and $W(n)$ is a $\mathfrak{w} X_{q}\left(A_{1}\right)$ module, both λ_{1} and λ_{2} must be zero since $K_{1} \bar{K}_{1}=\bar{K}_{2} K_{2}=J$. In this case, the $\mathfrak{w} X_{q}\left(A_{1}\right)$-module structure on $W(n)$ is given as follows

$$
\begin{gathered}
K_{1} w_{i}=K_{2} w_{i}=0, \bar{K}_{1} w_{i}=\bar{K}_{2} w_{i}=0,0 \leq i \leq n \\
E w_{i}=0,0 \leq i \leq n \\
F w_{j}=w_{j+1}, 0 \leq j \leq n-1 \\
F w_{n}=0
\end{gathered}
$$

Remark 4.3. If $\mathfrak{w} X_{q}\left(A_{1}\right)$ is a weak Hopf algebra with $d=(1 \mid 0)$ or (0|0), we only can define the $\mathfrak{w} X_{q}\left(A_{1}\right)$-module $W(0)$. For, if F is of type II, then $K_{1} F \bar{K}_{1} w_{0}=$ $q_{1} F w_{0}=0$ and $F w_{0}=0$. On the other hand, if $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(0 \mid 1)$ or (1|1), then $W(1)$ is an indecomposable $\mathfrak{w} X_{q}\left(A_{1}\right)$-module of dimension 2, but is not simple since $W(0)$ is a proper submodule of $W(1)$.

Theorem 4.4. Assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is the weak Hopf algebra of type $d=$ $(k \mid \bar{k})$. Let M be a highest weight $\mathfrak{w} X_{q}\left(A_{1}\right)$-module. Then $M \cong W(t)(0 \leq t \leq \bar{k})$ or $M \cong V_{\lambda_{1}, \lambda_{2}, \delta}(n)$, where $n=0,1$.
Proof. Since M is a highest weight $\mathfrak{w} X_{q}\left(A_{1}\right)$-module, M has a highest weight vector v_{0} such that $M=\mathfrak{w} X_{q}\left(A_{1}\right) v_{0}$, and

$$
E v_{0}=0, K_{i} v_{0}=\lambda_{i} v_{0}, i=1,2
$$

Let $\lambda_{1} \lambda_{2} \neq 0$. By Lemma 4.2 , we have $M \cong V_{\lambda_{1}, \lambda_{2}, \delta}(n)(n=0,1)$.
Let $\lambda_{1} \lambda_{2}=0$. If F is of type II, then we have $F v_{0}=0$ because of the relations $K_{1} F \bar{K}_{1}=q_{1} F$ and $K_{2} F \bar{K}_{2}=q_{2}^{-1} F$. Hence we obtain $M \cong W(0)$. If F is of type I, it is easy to check that $M \cong W(0)$ when $\operatorname{dim} M=1$. If $\operatorname{dim} M \neq 1$, we have $F v_{0} \neq 0$ by Proposition 2.2. If $F v_{0}=a v_{0}$ for some nonzero $a \in \mathbb{F}$, then $F F v_{0}=a^{2} v_{0}=0$ and it is a contradiction. So $\left\{v_{0}, F v_{0}\right\}$ is linearly independent. If we take $v_{1}=F v_{0}$, then we have

$$
\begin{gathered}
E v_{0}=0, E v_{1}=E F v_{0}=F E v_{0}=0, \\
F v_{0}=v_{1}, F v_{1}=0 .
\end{gathered}
$$

Since M is generated by v_{0}, we have $M \cong W(1)$.
In conclusion, $M \cong W(t)(0 \leq t \leq \bar{k})$ or $M \cong V_{\lambda_{1}, \lambda_{2}, \delta}(n), n=0,1$.
Assume $\eta_{1}^{2}=\eta_{2}^{2}, \mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(k \mid \bar{k})$. Let $M_{\eta_{1}, \eta_{2}}(m, n)$ be a vector space spanned by $\left\{X^{i} Y^{j} \mid 0 \leq i \leq m, 0 \leq j \leq n\right\}$, where $0 \leq m \leq k, 0 \leq n \leq$ \bar{k}. Then it is straightforward to see that $M_{\eta_{1}, \eta_{2}}(m, n)$ is a $\mathfrak{w} X_{q}\left(A_{1}\right)$-module defined by

$$
\begin{aligned}
& K_{1}\left(X^{i} Y^{j}\right)=q^{j-i} \eta_{1} X^{i} Y^{j}, K_{2}\left(X^{i} Y^{j}\right)=(-q)^{j-i} \eta_{2} X^{i} Y^{j}, \\
& \bar{K}_{1}\left(X^{i} Y^{j}\right)=q^{i-j} \bar{\eta}_{1} X^{i} Y^{j}, \bar{K}_{2}\left(X^{i} Y^{j}\right)=(-q)^{i-j} \bar{\eta}_{2} X^{i} Y^{j},
\end{aligned}
$$

$$
\begin{gathered}
E\left(X^{i} Y^{j}\right)=X^{i+1} Y^{j}, 0 \leq i<m, E\left(X^{m} Y^{j}\right)=0 \\
F\left(X^{i} Y^{j}\right)=X^{i} Y^{j+1}, 0 \leq j<n, F\left(X^{i} Y^{n}\right)=0
\end{gathered}
$$

Remark 4.5. If $\eta_{1}=\eta_{2}=0$, we denote $M_{0,0}(m, n)$ by $M(m, n)$ for simplicity. Specially, $M(0, n) \cong W(n)$. Under the condition of $\eta_{1}=\eta_{2}=0$, if $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(1 \mid 1)$, we can define the $\mathfrak{w} X_{q}\left(A_{1}\right)$-modules $M(0,0), M(1,0)$, $M(0,1), M(1,1)$; if $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(1 \mid 0)$, we can define $M(0,0)$, $M(1,0)$; if $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(0 \mid 1)$, we can define $M(0,0), M(0,1)$; if $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(0 \mid 0)$, we can only define $M(0,0)$.

If we can define $\mathfrak{w} X_{q}\left(A_{1}\right)$-modules $M_{\eta_{1}, \eta_{2}}(1,0), M_{\eta_{1}, \eta_{2}}(0,1), M_{\eta_{1}, \eta_{2}}(1,1)$ for some type d, then they are indecomposable and $M_{\eta_{1}, \eta_{2}}(0,0)$ is simple. For example, assume that $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=(1 \mid 1)$. Let $0 \neq M_{1}$ be any submodule of $M_{\eta_{1}, \eta_{2}}(1,1)$. For any $0 \neq x \in M_{1}, x$ can be written as

$$
x=a_{00} X^{0} Y^{0}+a_{10} X^{1} Y^{0}+a_{01} X^{0} Y^{1}+a_{11} X^{1} Y^{1}
$$

There is at least a nonzero coefficient. It yields that $X^{1} Y^{1} \in M_{1}$ for all cases. This means that $\mathbb{F} X^{1} Y^{1}$ is the submodule of any non-zero submodule of $M_{\eta_{1}, \eta_{2}}(1,1)$. Hence $M_{\eta_{1}, \eta_{2}}(1,1)$ is indecomposable. The other cases are similar to see.

5. The Clebsch-Gordan decomposition for $\mathfrak{w} X_{q}\left(A_{1}\right)$

In this section, we assume that the weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type (1|1) and consider tensor products of their two the highest weight $\mathfrak{w} X_{q}\left(A_{1}\right)$ modules.

Let V and W be two $\mathfrak{w} X_{q}\left(A_{1}\right)$-modules, recall that $V \otimes W$ is also a $\mathfrak{w} X_{q}\left(A_{1}\right)$ module defined by

$$
\begin{gathered}
E(v \otimes w)=K_{1} \bar{K}_{2} v \otimes E w+E v \otimes w, \\
F(v \otimes w)=v \otimes F w+F v \otimes \bar{K}_{1} K_{2} w, \\
K_{i}(v \otimes w)=K_{i} v \otimes K_{i} w, \\
\bar{K}_{i}(v \otimes w)=\bar{K}_{i} v \otimes \bar{K}_{i} w .
\end{gathered}
$$

We denote

$$
m W(n)=\underbrace{W(n) \oplus W(n) \oplus \cdots \oplus W(n)}_{m \text { copies }} .
$$

Theorem 5.1. Assume that the weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of type $d=$ (1|1). Then
(1) $V_{\lambda_{1}, \lambda_{2}, \delta}(m) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(n) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta \delta^{\prime}}(m+n), m+n \leq 1$;
(2) If $\lambda_{1}^{2} \lambda_{1}^{\prime 2} \neq \lambda_{2}^{2} \lambda_{2}^{\prime 2}$, then

$$
\begin{aligned}
& V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, 0}(1) \oplus V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, 0}(1) ; \\
& \text { if } \lambda_{1}^{2} \lambda_{1}^{\prime 2}=\lambda_{2}^{2} \lambda_{2}^{2}, \text { then } \\
& \quad V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong M_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}}(1,1) ;
\end{aligned}
$$

(3) $V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1) \oplus V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1)$;
(4) $V_{\lambda_{1}, \lambda_{2}, 1}(m) \otimes W(n) \cong(m+1) W(n), V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes W(n) \cong M(1, n)$;
(5) $W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n) \cong W(n), W(1) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n) \cong(n+1) W(1)$;
(6) $W(m) \otimes W(n) \cong(m+1) W(n)$,
where $m, n=0$ or 1 .
Proof. Keeping all notations as Section 4.
(1) We consider the following cases, the others can be obtained in a similar way.

Case 1. For $V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(1)$, we have

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\lambda_{i} \lambda_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \bar{K}_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\bar{\lambda}_{i} \bar{\lambda}_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \\
E\left(v_{0} \otimes v_{0}^{\prime}\right)=0, E\left(v_{0} \otimes v_{1}^{\prime}\right)=0, F\left(v_{0} \otimes v_{0}^{\prime}\right)=v_{0} \otimes v_{1}^{\prime}, F\left(v_{0} \otimes v_{1}^{\prime}\right)=0 .
\end{gathered}
$$

So

$$
V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, 1}(1) .
$$

Case 2. For $V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 0}(1)$, note that

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\lambda_{i} \lambda_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \bar{K}_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\bar{\lambda}_{i} \bar{\lambda}_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \\
E\left(v_{0} \otimes v_{0}^{\prime}\right)=0, F\left(v_{0} \otimes v_{0}^{\prime}\right)=v_{0} \otimes v_{1}^{\prime}, F\left(v_{0} \otimes v_{1}^{\prime}\right)=0, \\
E\left(v_{0} \otimes v_{1}^{\prime}\right)=K_{1} \bar{K}_{2} v_{0} \otimes E v_{1}^{\prime}=\frac{\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}-\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}}{q-q^{-1}} v_{0} \otimes v_{0}^{\prime} \neq 0 .
\end{gathered}
$$

Then

$$
V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 0}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, 0}(1)
$$

Case 3. Considering $V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(0)$, note that

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\lambda_{i} \lambda_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \bar{K}_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\bar{\lambda}_{i} \bar{\lambda}_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \\
E\left(v_{0} \otimes v_{0}^{\prime}\right)=0, F\left(v_{0} \otimes v_{0}^{\prime}\right)=\bar{\lambda}_{1}^{\prime} \bar{\lambda}_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}, F\left(\bar{\lambda}_{1}^{\prime} \bar{\lambda}_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}\right)=0, \\
E\left(F\left(v_{0} \otimes v_{0}^{\prime}\right)\right)=\bar{\lambda}_{1}^{\prime} \bar{\lambda}_{2}^{\prime}\left(E v_{1} \otimes v_{0}^{\prime}\right)=\frac{\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}-\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}}{q-q^{-1}} v_{0} \otimes v_{0}^{\prime} \neq 0 .
\end{gathered}
$$

So

$$
V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(0) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, 0}(1) .
$$

For $V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(0)$ and $V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, 1}(0)$, we also can get the similar result.

It follows that

$$
V_{\lambda_{1}, \lambda_{2}, \delta}(m) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(n) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta \delta^{\prime}}(m+n), m+n \leq 1
$$

(2) Considering $V_{\lambda_{1}, \lambda_{2}, \delta}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1)$, we have

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\lambda_{i} \lambda_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \bar{K}_{i}\left(v_{0} \otimes v_{0}^{\prime}\right)=\bar{\lambda}_{i} \bar{\lambda}_{i}^{\prime} v_{0} \otimes v_{0}^{\prime}, \\
E\left(v_{0} \otimes v_{0}^{\prime}\right)=K_{1} \bar{K}_{2} v_{0} \otimes E v_{0}^{\prime}+E v_{0} \otimes v_{0}^{\prime}=0, \\
F\left(v_{0} \otimes v_{0}^{\prime}\right)=v_{0} \otimes F v_{0}^{\prime}+F v_{0} \otimes \bar{K}_{1} K_{2} v_{0}^{\prime}=v_{0} \otimes v_{1}^{\prime}+\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime},
\end{gathered}
$$

$$
\begin{gathered}
E\left(F\left(v_{0} \otimes v_{0}^{\prime}\right)\right)=E\left(v_{0} \otimes v_{1}^{\prime}+\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}\right)=\frac{\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}-\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}}{q-q^{-1}} v_{0} \otimes v_{0}^{\prime} \\
F\left(F\left(v_{0} \otimes v_{0}^{\prime}\right)\right)=F\left(v_{0} \otimes v_{1}^{\prime}+\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}\right)=0
\end{gathered}
$$

So $v_{0} \otimes v_{0}^{\prime}$ is a $\mathfrak{w} X_{q}\left(A_{1}\right)$-module highest weight vector and

$$
\mathfrak{w} X_{q}\left(A_{1}\right)\left(v_{0} \otimes v_{0}^{\prime}\right) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime \prime}}(1)
$$

where

$$
\delta^{\prime \prime}= \begin{cases}1, & \text { if } \lambda_{1}^{2} \lambda_{1}^{\prime 2}=\lambda_{2}^{2} \lambda_{2}^{\prime 2} \\ 0, & \text { if } \lambda_{1}^{2} \lambda_{1}^{\prime 2} \neq \lambda_{2}^{2} \lambda_{2}^{\prime 2}\end{cases}
$$

Now we consider other submodules of

$$
V_{\lambda_{1}, \lambda_{2}, \delta}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) .
$$

If $\delta=0$, this means that $\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2} \neq 0$, we take

$$
\nu_{0}=\left(\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}\right) v_{0} \otimes v_{1}^{\prime}-\left(\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime}-\lambda_{1}^{\prime} \bar{\lambda}_{2}^{\prime}\right) \lambda_{1} \bar{\lambda}_{2} v_{1} \otimes v_{0}^{\prime} \neq 0 .
$$

Then

$$
\begin{gathered}
K_{1} \nu_{0}=q \lambda_{1} \lambda_{1}^{\prime} \nu_{0}, \quad K_{2}(\nu)=-q \lambda_{2} \lambda_{2}^{\prime} \nu_{0}, \\
\bar{K}_{1} \nu_{0}=q^{-1} \bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \nu_{0}, \bar{K}_{2} \nu_{0}=-q^{-1} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime} \nu_{0},
\end{gathered}
$$

and

$$
\begin{gathered}
E \nu_{0}=0 \\
F \nu_{0}=\left(\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}-\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}\right) v_{1} \otimes v_{1}^{\prime}:=\nu_{1}, \\
E\left(\nu_{1}\right)=E\left(F\left(\nu_{0}\right)\right)=\frac{\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}-\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}}{q-q^{-1}} \nu_{0} \\
F\left(F\left(\nu_{0}\right)\right)=0
\end{gathered}
$$

If $\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}-\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime} \neq 0$, hence $\delta^{\prime \prime}=0$, then ν_{0} is another $\mathfrak{w} X_{q}\left(A_{1}\right)$ module highest weight vector and

$$
\mathfrak{w} X_{q}\left(A_{1}\right) \nu_{0} \cong V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, 0}(1)
$$

It follows that

$$
V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, 0}(1) \oplus V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, 0}(1)
$$

If $\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}-\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}=0$, hence $\delta^{\prime \prime}=1$, then ν_{0} is a constant multiple of $F\left(v_{0} \otimes v_{0}^{\prime}\right)$. We have

$$
\begin{gathered}
K_{1}\left(v_{1} \otimes v_{0}^{\prime}\right)=q \lambda_{1} \lambda_{1}^{\prime} v_{1} \otimes v_{0}^{\prime}, K_{2}\left(v_{1} \otimes v_{0}^{\prime}\right)=-q \lambda_{2} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}, \\
E\left(v_{1} \otimes v_{0}^{\prime}\right)=E v_{1} \otimes v_{0}^{\prime}=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0} \otimes v_{0}^{\prime}, E\left(E v_{1} \otimes v_{0}^{\prime}\right)=0 \\
F\left(v_{1} \otimes v_{0}^{\prime}\right)=v_{1} \otimes F v_{0}^{\prime}=v_{1} \otimes v_{1}^{\prime}, F\left(v_{1} \otimes v_{1}^{\prime}\right)=0, \\
F\left(E\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} F\left(v_{0} \otimes v_{0}^{\prime}\right),
\end{gathered}
$$

$$
\begin{aligned}
E\left(v_{1} \otimes v_{1}^{\prime}\right) & =E\left(F\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0} \otimes v_{1}^{\prime}-\frac{\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime}-\lambda_{1}^{\prime} \bar{\lambda}_{2}^{\prime}}{q-q^{-1}} \lambda_{1} \bar{\lambda}_{2} v_{1} \otimes v_{0}^{\prime} \\
& =\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}}\left(v_{0} \otimes v_{1}^{\prime}+\bar{\lambda}_{1}^{\prime} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}\right)=F\left(E\left(v_{1} \otimes v_{0}^{\prime}\right)\right) .
\end{aligned}
$$

Let $X^{i} Y^{j}=E^{i} F^{j}\left(v_{1} \otimes v_{0}^{\prime}\right)$, where $i, j=0$ or 1 .

$$
\begin{gathered}
K_{1}\left(X^{0} Y^{0}\right)=q \lambda_{1} \lambda_{1}^{\prime} X^{0} Y^{0}, K_{2}\left(X^{0} Y^{0}\right)=-q \lambda_{2} \lambda_{2}^{\prime} X^{0} Y^{0} \\
E\left(X^{0} Y^{0}\right)=X^{1} Y^{0}=E\left(v_{1} \otimes v_{0}^{\prime}\right), E\left(X^{1} Y^{0}\right)=0 \\
F\left(X^{0} Y^{0}\right)=X^{0} Y^{1}=F\left(v_{1} \otimes v_{0}^{\prime}\right), F\left(X^{0} Y^{1}\right)=0 \\
E\left(X^{0} Y^{1}\right)=E\left(F\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=X^{1} Y^{1}=E\left(v_{1} \otimes v_{1}^{\prime}\right), E\left(X^{1} Y^{1}\right)=0, \\
F\left(X^{1} Y^{0}\right)=F\left(E\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=X^{1} Y^{1}, F\left(X^{1} Y^{1}\right)=0
\end{gathered}
$$

Thus

$$
V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong M_{q \lambda_{1} \lambda_{1}^{\prime},-q \lambda_{2} \lambda_{2}^{\prime}}(1,1) .
$$

(3) Assume that $\lambda_{1}^{2}=\lambda_{2}^{2}$, this means that $\delta=1$. We have

$$
\begin{gathered}
K_{1}\left(v_{1} \otimes v_{0}^{\prime}\right)=q \lambda_{1} \lambda_{1}^{\prime} v_{1} \otimes v_{0}^{\prime}, K_{2}\left(v_{1} \otimes v_{0}^{\prime}\right)=-q \lambda_{2} \lambda_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}, \\
\bar{K}_{1}\left(v_{1} \otimes v_{0}^{\prime}\right)=q^{-1} \bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} v_{1} \otimes v_{0}^{\prime}, \bar{K}_{2}\left(v_{1} \otimes v_{0}^{\prime}\right)=-q^{-1} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime} v_{1} \otimes v_{0}^{\prime}, \\
E\left(v_{1} \otimes v_{0}^{\prime}\right)=0, \\
F\left(v_{1} \otimes v_{0}^{\prime}\right)=v_{1} \otimes v_{1}^{\prime}, \\
E\left(F\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=E\left(v_{1} \otimes v_{1}^{\prime}\right)=\frac{\lambda_{1} \lambda_{1}^{\prime} \bar{\lambda}_{2} \bar{\lambda}_{2}^{\prime}-\bar{\lambda}_{1} \bar{\lambda}_{1}^{\prime} \lambda_{2} \lambda_{2}^{\prime}}{q-q^{-1}} v_{1} \otimes v_{0}^{\prime}, \\
F\left(F\left(v_{1} \otimes v_{0}^{\prime}\right)\right)=0 .
\end{gathered}
$$

So $v_{1} \otimes v_{0}^{\prime}$ is a $\mathfrak{w} X_{q}\left(A_{1}\right)$-module highest weight vector and

$$
\mathfrak{w} X_{q}\left(A_{1}\right)\left(v_{1} \otimes v_{0}^{\prime}\right) \cong V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1)
$$

On the other hand, from the proof of the statement (2) we see that

$$
\mathfrak{w} X_{q}\left(A_{1}\right)\left(v_{0} \otimes v_{0}^{\prime}\right) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1) .
$$

It follows that

$$
V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes V_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \delta^{\prime}}(1) \cong V_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1) \oplus V_{q \lambda_{1} \lambda_{1}^{\prime},(-q) \lambda_{2} \lambda_{2}^{\prime}, \delta^{\prime}}(1) .
$$

(4) We consider the following cases.

Case 1. For $V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes W(0)$, we have

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes w_{0}\right)=0 \\
E\left(v_{0} \otimes w_{0}\right)=K_{1} \bar{K}_{2} v_{0} \otimes E w_{0}+E v_{0} \otimes w_{0}=0 \\
F\left(v_{0} \otimes w_{0}\right)=v_{0} \otimes F w_{0}+F v_{0} \otimes \bar{K}_{1} K_{2} w_{0}=0,
\end{gathered}
$$

hence

$$
V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes W(0) \cong W(0) .
$$

Case 2. For $V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes W(1)$, we get

$$
K_{i}\left(v_{0} \otimes w_{0}\right)=0, K_{i}\left(v_{1} \otimes w_{0}\right)=0
$$

$$
\begin{gathered}
E\left(v_{0} \otimes w_{0}\right)=0, F\left(v_{0} \otimes w_{0}\right)=v_{0} \otimes w_{1}, \\
E\left(v_{0} \otimes w_{1}\right)=0, F\left(v_{0} \otimes w_{1}\right)=0 \\
E\left(v_{1} \otimes w_{0}\right)=0, F\left(v_{1} \otimes w_{0}\right)=v_{1} \otimes w_{1} \\
E\left(v_{1} \otimes w_{1}\right)=0, F\left(v_{1} \otimes w_{1}\right)=0
\end{gathered}
$$

Thus

$$
V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes W(1) \cong 2 W(1)
$$

Case 3. Considering the case $V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes W(0)$. Note that $\lambda_{1} \bar{\lambda}_{2} \neq \bar{\lambda}_{1} \lambda_{2}$, we have

$$
\begin{gathered}
K_{i}\left(v_{0} \otimes w_{0}\right)=0, K_{i}\left(v_{1} \otimes w_{0}\right)=0 \\
E\left(v_{0} \otimes w_{0}\right)=0, F\left(v_{0} \otimes w_{0}\right)=0 \\
E\left(v_{1} \otimes w_{0}\right)=E v_{1} \otimes w_{0}=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0} \otimes w_{0} \neq 0 \\
E\left(E\left(v_{1} \otimes w_{0}\right)\right)=0, F\left(v_{1} \otimes w_{0}\right)=v_{1} \otimes F w_{0}=0
\end{gathered}
$$

Now, we assume that $X^{i} Y^{j}=E^{i} F^{j}\left(v_{1} \otimes w_{0}\right)$, where $i=0$ or 1 , and $j=0$.

$$
K_{i}\left(X^{0} Y^{0}\right)=0
$$

$$
\begin{gathered}
E\left(X^{0} Y^{0}\right)=X^{1} Y^{0}=E^{1} F^{0}\left(v_{1} \otimes w_{0}\right)=E\left(v_{1} \otimes w_{0}\right) \\
E\left(X^{1} Y^{0}\right)=E\left(E\left(v_{1} \otimes w_{0}\right)\right)=0
\end{gathered}
$$

$$
F\left(X^{0} Y^{0}\right)=X^{0} Y^{1}=E^{0} F^{1}\left(v_{1} \otimes w_{0}\right)=F\left(v_{1} \otimes w_{0}\right)=0
$$

Therefore

$$
V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes W(0) \cong M(1,0) .
$$

Case 4. For $V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes W(1)$, this means that $\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2} \neq 0$. We have

$$
\begin{gathered}
K_{i}\left(v_{i} \otimes w_{j}\right)=0, E\left(v_{0} \otimes w_{0}\right)=0, F\left(v_{0} \otimes w_{0}\right)=v_{0} \otimes w_{1}, \\
E\left(v_{0} \otimes w_{1}\right)=0, F\left(v_{0} \otimes w_{1}\right)=0, \\
E\left(v_{1} \otimes w_{0}\right)=E v_{1} \otimes w_{0}=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0} \otimes w_{0}, \\
F\left(v_{1} \otimes w_{0}\right)=v_{1} \otimes F w_{0}=v_{1} \otimes w_{1}, F\left(v_{1} \otimes w_{1}\right)=0, \\
E\left(v_{1} \otimes w_{1}\right)=E v_{1} \otimes w_{1}=\frac{\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}}{q-q^{-1}} v_{0} \otimes w_{1} .
\end{gathered}
$$

Let $X^{i} Y^{j}=E^{i} F^{j}\left(v_{1} \otimes w_{0}\right)$, where $i, j=0$ or 1 .

$$
\begin{aligned}
& K_{i}\left(X^{0} Y^{0}\right)=0 \\
& E\left(X^{0} Y^{0}\right)=X^{1} Y^{0}=E^{1} F^{0}\left(v_{1} \otimes w_{0}\right)=E\left(v_{1} \otimes w_{0}\right) \\
& E\left(X^{1} Y^{0}\right)=E\left(E\left(v_{1} \otimes w_{0}\right)\right)=0 \\
& E\left(X^{0} Y^{1}\right)=X^{1} Y^{1}=E^{1} F^{1}\left(v_{1} \otimes w_{0}\right)=E\left(v_{1} \otimes w_{1}\right) \\
& E\left(X^{1} Y^{1}\right)=E\left(E\left(v_{1} \otimes w_{1}\right)\right)=0 \\
& F\left(X^{0} Y^{0}\right)=X^{0} Y^{1}=E^{0} F^{1}\left(v_{1} \otimes w_{0}\right)=F\left(v_{1} \otimes w_{0}\right) \\
& F\left(X^{0} Y^{1}\right)=F\left(F\left(v_{1} \otimes w_{0}\right)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& F\left(X^{1} Y^{0}\right)=X^{1} Y^{1}=E^{1} F^{1}\left(v_{1} \otimes w_{0}\right)=E\left(v_{1} \otimes w_{1}\right), \\
& F\left(X^{1} Y^{1}\right)=F\left(F\left(v_{1} \otimes w_{0}\right)\right)=0
\end{aligned}
$$

Therefore

$$
V_{\lambda_{1}, \lambda_{2}, 0}(1) \otimes W(1) \cong M(1,1)
$$

For $V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes W(1)$ and $V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes W(0)$, in a similar way we get

$$
\begin{gathered}
V_{\lambda_{1}, \lambda_{2}, 1}(0) \otimes W(1) \cong W(1) \\
V_{\lambda_{1}, \lambda_{2}, 1}(1) \otimes W(0) \cong W(0) \oplus W(0) .
\end{gathered}
$$

(5) Note that $E\left(W(m) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n)\right)=0$. We consider the action of F on $W(m) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n)$.

Case 1. Considering $W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(0)$, we have

$$
K_{i}\left(w_{0} \otimes v_{0}\right)=0, F\left(w_{0} \otimes v_{0}\right)=0
$$

hence

$$
W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(0) \cong W(0) .
$$

Case 2. For $W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(1)$, it is easy to see that

$$
K_{i}\left(w_{0} \otimes v_{0}\right)=0,
$$

$$
F\left(w_{0} \otimes v_{0}\right)=w_{0} \otimes F v_{0}=w_{0} \otimes v_{1}, F\left(w_{0} \otimes v_{1}\right)=0
$$

Therefore

$$
W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(1) \cong W(1) .
$$

Case 3. For $W(1) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(0)$, note that $\bar{\lambda}_{1} \lambda_{2} \neq 0$, and we get

$$
K_{i}\left(w_{0} \otimes v_{0}\right)=0
$$

$$
F\left(w_{0} \otimes v_{0}\right)=w_{0} \otimes F v_{0}+F w_{0} \otimes \bar{K}_{1} K_{2} v_{0}=\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes v_{0} \neq 0
$$

$$
F\left(\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes v_{0}\right)=\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes F v_{0}=0
$$

Thus

$$
W(1) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(0) \cong W(1) .
$$

Case 4. Considering the case $W(1) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(1)$, we have

$$
K_{i}\left(w_{0} \otimes v_{0}\right)=0, F\left(w_{0} \otimes v_{0}\right)=w_{0} \otimes v_{1}+\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes v_{0}
$$

$$
F\left(w_{0} \otimes v_{1}+\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes v_{0}\right)=F\left(w_{0} \otimes v_{1}\right)+F\left(\bar{\lambda}_{1} \lambda_{2} w_{1} \otimes v_{0}\right)
$$

$$
=F w_{0} \otimes \bar{K}_{1} K_{2} v_{1}+w_{1} \otimes F \bar{\lambda}_{1} \lambda_{2} v_{0}=0
$$

This means that

$$
\mathfrak{w} X_{q}\left(A_{1}\right)\left(w_{0} \otimes v_{0}\right) \cong W(1) .
$$

Assume that $w=a w_{0} \otimes v_{1}+b w_{1} \otimes v_{0}, b \neq a \bar{\lambda}_{1} \lambda_{2}$,

$$
K_{i} w=K_{i}\left(a w_{0} \otimes v_{1}+b w_{1} \otimes v_{0}\right)=0
$$

$$
F w=a F\left(w_{0} \otimes v_{1}\right)+b F\left(w_{1} \otimes v_{0}\right)=\left(b-a \bar{\lambda}_{1} \lambda_{2}\right) w_{1} \otimes v_{1} \neq 0,
$$

$$
F(F(w))=0
$$

It follows that $\mathfrak{w} X_{q}\left(A_{1}\right) w \cong W(1)$. Hence
$W(1) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(1)=\mathfrak{w} X_{q}\left(A_{1}\right)\left(w_{0} \otimes v_{0}\right) \oplus \mathfrak{w} X_{q}\left(A_{1}\right) w \cong W(1) \oplus W(1)$.
(6) It is easy to see that $E(W(m) \otimes W(n))=0$. Consider the action of F on $W(m) \otimes W(n)$.

Case 1. For $W(0) \otimes W(0), F\left(w_{0} \otimes w_{0}^{\prime}\right)=0$, hence

$$
W(0) \otimes W(0) \cong W(0)
$$

Case 2. For $W(0) \otimes W(1)$, we have

$$
\begin{gathered}
K_{i}\left(w_{0} \otimes w_{0}^{\prime}\right)=0 \\
F\left(w_{0} \otimes w_{0}^{\prime}\right)=w_{0} \otimes F w_{0}^{\prime}=w_{0} \otimes w_{1}^{\prime}, F\left(w_{0} \otimes w_{1}^{\prime}\right)=0 .
\end{gathered}
$$

So

$$
W(0) \otimes W(1) \cong W(1)
$$

Case 3. For $W(1) \otimes W(0)$, we get

$$
\begin{aligned}
& K_{i}\left(w_{0} \otimes w_{0}^{\prime}\right)=0, F\left(w_{0} \otimes w_{0}^{\prime}\right)=w_{0} \otimes F w_{0}^{\prime}=0 \\
& K_{i}\left(w_{1} \otimes w_{0}^{\prime}\right)=0, F\left(w_{1} \otimes w_{0}^{\prime}\right)=w_{1} \otimes F w_{0}^{\prime}=0
\end{aligned}
$$

Consequently

$$
W(1) \otimes W(0) \cong W(0) \oplus W(0)
$$

Case 4. For $W(1) \otimes W(1)$, we get

$$
\begin{gathered}
K_{i}\left(w_{0} \otimes w_{0}^{\prime}\right)=0, K_{i}\left(w_{1} \otimes w_{0}^{\prime}\right)=0 \\
F\left(w_{0} \otimes w_{0}^{\prime}\right)=w_{0} \otimes F w_{0}^{\prime}=w_{0} \otimes w_{1}^{\prime}, F\left(w_{0} \otimes w_{1}^{\prime}\right)=0 \\
F\left(w_{1} \otimes w_{0}^{\prime}\right)=w_{1} \otimes F w_{0}^{\prime}=w_{1} \otimes w_{1}^{\prime}, F\left(w_{1} \otimes w_{1}^{\prime}\right)=0
\end{gathered}
$$

Therefore

$$
W(1) \otimes W(n) \cong W(n) \oplus W(n)=2 W(n)
$$

The proof is finished.
Theorem 5.1 for $\mathfrak{w} X_{q}\left(A_{1}\right)$ of other types d can be discussed in a similar way. It is noted that if E (resp. F) is of type II, for two $\mathfrak{w} X_{q}\left(A_{1}\right)$-module V, W, we have to define the $\mathfrak{w} X_{q}\left(A_{1}\right)$-module on $V \otimes W$ by

$$
\begin{gathered}
E(v \otimes w)=K_{1} \bar{K}_{2} v \otimes E w+E v \otimes J w, \\
\left(\text { resp. } F(v \otimes w)=J v \otimes F w+F v \otimes \bar{K}_{1} K_{2} w\right)
\end{gathered}
$$

Theorem 5.1 should be restated. Explicitly,

- If $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of $d=(0 \mid 1)$, Theorem $5.1(4)$ is replaced by $\left(4^{\prime}\right) V_{\lambda_{1}, \lambda_{2}, \delta}(m) \otimes W(n) \cong(m+1) W(n)$.
- If $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of $d=(1 \mid 0)$, Theorem $5.1(4)(5)(6)$ are respectively replaced by
$\left(4^{\prime}\right) V_{\lambda_{1}, \lambda_{2}, 0}(0) \otimes W(0) \cong W(0), V_{\lambda_{1}, \lambda_{2}, \delta}(1) \otimes W(0) \cong M(1,0)$,
$\left(5^{\prime}\right) W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n) \cong(n+1) W(0)$,
$\left(6^{\prime}\right) W(0) \otimes W(0) \cong W(0)$.
- If $\mathfrak{w} X_{q}\left(A_{1}\right)$ is of $d=(0 \mid 0)$, Theorem $5.1(4)(5)(6)$ are respectively replaced by
$\left(4^{\prime}\right) V_{\lambda_{1}, \lambda_{2}, \delta}(m) \otimes W(0) \cong(m+1) W(0)$,
$\left(5^{\prime}\right) W(0) \otimes V_{\lambda_{1}, \lambda_{2}, \delta}(n) \cong(n+1) W(0)$,
$\left(6^{\prime}\right) W(0) \otimes W(0) \cong W(0)$.

References

[1] A. Aghamohammadi, V. Karimipour, and S. Rouhani, The multiparametric nonstandard deformation of A_{n-1}, J. Phys. A: Math. Gen. 26 (1993), no. 3, 75-82.
[2] M. Ge, G. Liu, and K. Xue, New solutions of Yang-Baxter equations: Birman-Wenzl algebra and quantum group structures, J. Phys. A: Math. Gen. 24 (1991), no. 12, 26792690.
[3] J. C. Jantzen, Lectures on Guantum Groups, Grad. Stud. Math. 6, Amer. Math. Soc., Providence. RI, 1996.
[4] N. Jing, M. Ge, and Y. Wu, A new quantum group associated with a "nonstandard" braid group representation, Lett. Math. Phys. 21 (1991), no. 3, 193-203.
[5] C. Kassel, Quantum Groups, GTM 155. Springer-Verlag, 1995.
[6] F. Li, Weak Hopf algebras and new solutions of Yang-Baxter equation, J. Algebra 208 (1998), no. 1, 72-100.
[7] F. Li and S. Duplij, Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation, Comm. Math. Phys. 225 (2002), no. 1, 191-217.
[8] H. Wang and S. Yang, The Isomorphisms and the center of weak quantum algebras $\omega s l_{q}(2)$, Tamkang J. Math. 36 (2005), no. 4, 365-376.
[9] S. Yang, Weak Hopf algebras corresponding to Cartan matrices, J. Math. Phys. 46 (2005), no. 7, 073502, 18 pp.
[10] \qquad , The Clebsch-Gordan decomposition for quantum algebra $\mathfrak{w s l} l_{q}(2)$, Advances in ring theory, 307-316, World Sci. Publ., Hackensack, NJ, 2005.

Cheng Cheng
College of Applied Sciences
Beijing University of Technology
Beijing 100124, P. R. China
E-mail address: tanchengxiangdai@yeah.net
Shilin Yang
College of Applied Sciences
Beijing University of Technology
Beijing 100124, P. R. China
E-mail address: slyang@bjut.edu.cn

[^0]: Received January 14, 2016; Revised August 31, 2016.
 2010 Mathematics Subject Classification. 16T99, 17B37, 17B10.
 Key words and phrases. non-standard quantum group, weak Hopf algebra, ClebschGordan decomposition.

 Supported by National Natural Science Foundation of China (Grant No. 11471186, 11671024) and the Beijing Natural Science Foundation (Grant No. 1162002).

