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WEAK HOPF ALGEBRAS CORRESPONDING TO

NON-STANDARD QUANTUM GROUPS

Cheng Cheng and Shilin Yang

Abstract. We construct a weak Hopf algebra wXq(A1) corresponding
to non-standard quantum group Xq(A1). The PBW basis of wXq(A1) is
described and all the highest weight modules of wXq(A1) are classified.
Finally we give the Clebsch-Gordan decomposition of the tensor product
of two highest weight modules of wXq(A1).

Introduction

In this paper, we always assume that the base closed field is F with charac-
teristic 0. All algebras, modules are over the field F. The parameter q ∈ F is
non-zero and not a root of unity.

Quantum groups play an important role in mathematics and physics. A new
quantum group was constructed in [2] solving exotic solution of quantum Yang-
Baxter equation. This new quantum group is called the non-standard quantum
group. Jing et al. [4] derived a new quantum group Xq(2) by employing the
FRT method. All finite dimensional irreducible representations of Xq(2) were
classified. It is noted that dimensions of the irreducible representations are
only one or two. In 1993, Aghamohammadi et al. (see [1]) used the method of
FRT to obtain the non-standard quantum group Xq(An−1) corresponding to
type An−1. Note that Xq(A1) is just quantum algebra Xq(2). It is shown that
this kind of quantum group has a Hopf algebra structure (see [3, 5]). On the
other hand, Li defined a kind of weak Hopf algebra on a bialgebra with a weak
antipode in [6] and many interesting results are obtained. Yang constructed
weak Hopf algebras corresponding to Cartan matrices in [9] and gave their
PBW bases. It is noted that finite dimensional integrable representations of
wslq(2) were described and the decomposition of the tensor product of two
finite dimensional integrable modules were considered in [10].
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In this paper, we intend to study the weak Hopf algebra structure corre-
sponding to the non-standard quantum group Xq(A1). By definition, Xq(A1)
is the associative algebra over the field F with 1 generated by six generators
K±1

1 ,K±1
2 , E, F with the following relations

KiK
−1
i = K−1

i Ki = 1, i = 1, 2, K1K2 = K2K1,

K1E = q−1
1 EK1, K1F = q1FK1,

K2E = q2EK2, K2F = q−1
2 FK2,

E2 = F 2 = 0,

EF − FE =
K2K

−1
1 −K1K

−1
2

q − q−1
,

where q1 = q and q2 = −q−1.
First we add a centeral generator J and weaken the group-likes to get an

algebra wXq(A1). It is verified that wXq(A1) is a weak Hopf algebra but not a
Hopf algebra. Then the PBW basis of wXq(A1) is given in the similar way as
[9]. We also give the sufficient and necessary conditions of the isomorphism be-
tween wXq(A1) and wXp(A1) as weak Hopf algebras. By applying the idea in
[10] and some well-known facts, we can construct all highest weight representa-
tions of wXq(A1) and the Clebsch-Gordan decomposition of wXq(A1)-modules.
It is indicated that the indecomposable modules of wXq(A1) are not necessarily
irreducible. These results for wXq(A1) are not the same as those in [10]. In
fact they just extend the results in [4].

The paper is arranged as follows. In Section 1, we introduce some notions
and define the algebra wXq(A1), then we prove that wXq(A1) is a weak Hopf
algebra. In Section 2, We investigate the PBW basis of wXq(A1). In Section 3,
we describe the conditions of the weak Hopf isomorphisms between wXq(A1)
and wXp(A1). In Section 4, we classify all the highest weight modules of
wXq(A1). Then in Section 5, we give the Clebsch-Gordan decomposition of
tensor product of two highest weight modules of wXq(A1).

1. Preliminaries

In this section, we construct the weak Hopf algebra wXq(A1) by weaken Ki

of Xq(A1) and the defining relation KiK
−1
i = K−1

i Ki = 1 (i = 1, 2). Firstly,

we replace {Ki, K
−1
i | i = 1, 2} by {Ki, Ki | i = 1, 2} and introduce the new

generator J such that

KiKi = KiKi = J (i = 1, 2).

Secondly, we give the following the definition.

Definition 1.1 (see [9]). If E satisfies

K1E = q−1
1 EK1, K2E = q2EK2 and K1E = q1EK1, K2E = q−1

2 EK2,
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we say that E is of type I. If E satisfies

K1EK1 = q−1
1 E, K2EK2 = q2E,

we say that E is of type II.

Similarly, we can define F is of type I (type II). That is, if F satisfies

K1F = q1FK1, K2F = q−1
2 FK2 and K1F = q−1

1 FK1, K2F = q2FK2,

we say that F is of type I. If F satisfies

K1FK1 = q1F, K2FK2 = q−1
2 F,

we say that F is of type II.

Notation. (See [9]) The notation d = (k|k), k, k = 0 or 1 indicated that if
k = 1 (resp. 0), the corresponding generator E is of type I (resp. type II), and if
k = 1 (resp. 0), the corresponding generator F is of type II (resp. type I). The
information before | is related to E. The information after | is related to F . E
and F are said to be of type d if E and F are of type I or type II according to
d.

Now, we can give the definition of the algebra wXq(A1).

Definition 1.2. The algebra wXq(A1) is defined as an associative algebra over

the field F with 1 generated by J,K1,K2,K1,K2, E, F with the relations

K1K2 = K2K1, K1K2 = K2K1, KiKj = KjKi, i, j = 1, 2,

KiKi = J = KiKi, KiJ = JKi = Ki, KiJ = JKi = Ki, i = 1, 2,

E and F are of type d,

E2 = F 2 = 0,

EF − FE =
K2K1 −K1K2

q − q−1
.

In this case, we say wXq(A1) is of type d.

Lemma 1.3. In wXq(A1) of type d, the following statements hold.

(1) J, 1− J are idempotent elements.

(2) J is in the center of wXq(A1).
(3) If E (resp. F ) is of type II, then it enjoys type I.

(4)

Kn
1E

m = q−mn
1 EmKn

1 , K
n
1 F

m = qmn
1 FmKn

1 ,

Kn
2E

m = qmn
2 EmKn

2 , K
n
2 F

m = q−mn
2 FmKn

2 ,

K
n

1E
m = qmn

1 EmK
n

1 , K
n

1F
m = q−mn

1 FmK
n

1 ,

K
n

2E
m = q−mn

2 EmK
n

2 , K
n

2F
m = qmn

2 FmK
n

2 .
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Proof. (1) Easy.
(2) By definition, we have

KiJ = JKi, KiJ = JKi.

If E is type I, then

JE = K1K1E = q−1
1 K1EK1 = q1q

−1
1 EK1K1 = EJ.

If E is type II, then

JE = K1K1E = q1K1K1K1EK1 = q1K1EK1K1K1 = EK1K1 = EJ.

It is similar to get JF = FJ . Therefore, J is in the center of wXq(A1).

(3) If E is type II, the relation K1EK1 = q−1
1 E implies that K1EK1K1 =

q−1
1 EK1. The left hand side is

K1EJ = K1JE = K1E.

Hence, we get K1E = q−1
1 EK1. Similarly, K2E = q2EK2.

For the generator F , the statement is similar to prove.
(4) Straightforward. �

The concept of weak Hopf algebra was defined by [6], and was studied by
[7, 9]. By definition a weak Hopf algebraW is a bialgebra with a weak antipode
T such that T ∗ Id ∗ T = T and Id ∗ T ∗ Id = Id, where ∗ is the multiplication
of convolution algebra HomF(W,W ).

In the following, we can equip a coalgebra structure with wXq(A1) such that
wXq(A1) is a weak Hopf algebra. Indeed, we define the coalgebra structure in
wXq(A1) as follows.

The comultiplication ∆ : wXq(A1) −→ wXq(A1)⊗wXq(A1) is

∆(J) = J ⊗ J ,∆(Ki) = Ki ⊗Ki, ∆(Ki) = Ki ⊗Ki, i = 1, 2;

∆(E) =

{

(K1K2)⊗ E + E ⊗ 1, if E is of type I,
(K1K2)⊗ E + E ⊗ J, if E is of type II;

∆(F ) =

{

1⊗ F + F ⊗ (K2K1), if F is of type I,

J ⊗ F + F ⊗ (K2K1), if F is of type II.

The counit ε : wXq(A1) −→ F is

ε(Ki) = ε(Ki) = ε(J) = 1, i = 1, 2;

ε(E) = ε(F ) = 0.

It is obvious that wXq(A1) is a coalgebra by the definition of ∆ and ε. In fact:

Theorem 1.4. Keeping all notations as above. Then wXq(A1) is a weak Hopf

algebra with J 6= 1, the comultiplication ∆, counit ε and weak antipode T , but

it is not a Hopf algebra.
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Proof. Indeed, it is straightforward to see that wXq(A1) is a bialgebra (as the
proof in [9, Theorem 3.1]). To see that wXq(A1) is a weak Hopf algebra, we
need to find a weak antipode T such that T ∗ Id ∗ T = T and Id ∗ T ∗ Id = Id.
For the purpose, we define T : wXq(A1) −→ wXq(A1) by

T (J) = J, T (Ki) = Ki, T (Ki) = Ki, i = 1, 2,

T (E) = −K1K2E, T (F ) = −FK1K2.

The left is to prove T is an weak antipode of wXq(A1). The proof is more or
less the same as that in [9, Theorem 3.1].

We now prove that wXq(A1) is not a Hopf algebra. Otherwise, we assume
that wXq(A1) is a Hopf algebra and S : wXq(A1) −→ wXq(A1) is an antipode.
Then (S ∗ id)(J) = uε(J) = (id ∗ S)(J) implies that S(J)J = 1 = JS(J).
It follows that J is invertible. However, J(1 − J) = 0 and J 6= 1. It is
contradiction. Therefore, wXq(A1) is a weak Hopf algebra not a Hopf algebra.

�

2. The PBW basis of wXq(A1)

Let ωq = wXq(A1)J, ωq = wXq(A1)(J − 1), we have:

Proposition 2.1. Assume that wXq(A1) is of type d. Then wXq(A1) = ωq ⊕
ωq as algebras. Furthermore, ωq and Xq(A1) are isomorphic as Hopf algebras.

Proof. It is easy to see that

wXq(A1) = ωq ⊕ ωq

as algebras for J is a center idempotent element. Consider the algebra ωq, it

can be viewed as an algebra generated by EJ, FJ,K1,K2,K1,K2, satisfying
the following relations:

K1K2 = K2K1, K1K2 = K2K1, KiKj = KjKi, i, j = 1, 2,

K1K1 = J = K2K2, KiJ = JKi = Ki, KiJ = JKi = Ki, i = 1, 2,

K1EJ = q−1
1 EJK1, K1FJ = q1FJK1,

K2EJ = q2EJK2, K2FJ = q−1
2 FJK2,

K1EJ = q1EJK1, K1FJ = q−1
1 FJK1,

K2EJ = q−1
2 EJK2, K2FJ = q2FJK2,

(EJ)2 = (FJ)2 = 0,

(EJ)(FJ) − (FJ)(EJ) =
K2K1 −K1K2

q − q−1
,

where J is the identity of ωq. By the comultiplication of wXq(A1), it is deduced
in wXq(A1) that

∆(Ki) = Ki ⊗Ki, ∆(Ki) = Ki ⊗Ki, i = 1, 2,

∆(EJ) = (K1K2)⊗ EJ + EJ ⊗ J,

∆(FJ) = J ⊗ FJ + FJ ⊗ (K2K1),
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ε(Ki) = ε(Ki) = ε(J) = 1, i = 1, 2, ε(EJ) = ε(FJ) = 0,

T (J) = J, T (Ki) = Ki, T (Ki) = Ki, i = 1, 2,

T (EJ) = −K1K2(EJ), T (FJ) = −(FJ)K1K2.

Let ρ : Xq(A1) −→ ωq be the map defined by

ρ(K ′
i) = Ki, ρ(K

′−1
i ) = Ki, i = 1, 2, ρ(E′) = EJ, ρ(F ′) = FJ,

whereK ′
i,K

−1
i (i = 1, 2), E′, and F ′ are the generators ofXq(A1). It is straight-

forward to see that ρ is a well-defined surjective algebra homomorphism.
Let φ : wXq(A1) −→ Xq(A1) be a map given by

φ(1) = 1, φ(J) = 1, φ(E) = E, φ(F ) = F, φ(Ki) = Ki, φ(Ki) = K−1
i .

We can check that φ is a well-defined algebra homomorphism. If we consider
the restricted homomorphism φ|ωq

, then we have φ|ωq
◦ ρ = idXq(A1). Hence ρ

is injective. Therefore, ωq
∼= Xq(A1). �

It is noted that

wXq(A1)/〈J − 1 〉 ∼= Xq(A1)

as Hopf algebras, where 〈J − 1 〉 is the two-sided ideal generated by J − 1 (see
the proof of Proposition 2.1).

Let us describe the structure of ωq.

• If E (resp. F ) is of type II, then E(1 − J) = 0 (resp. F (1 − J) = 0).
Indeed, if E is of type II, then q−1

1 E = K1EK1 = K1EK1J = q−1
1 EJ

and E(1− J) = 0. Similarly for F .
• If E (resp. F ) is of type I, then E(1 − J) 6= 0 (resp. F (1 − J) 6= 0).
To see this, if E and F are of type d = (1|1), we apply the actions of
E(1− J) and F (1 − J) on the wXq(A1)-module M(1, 1) in Section 4,
we have E(1− J)X0Y 0 = X1Y 0 6= 0 and F (1−J)X0Y 0 = X0Y 1 6= 0.
Hence E(1 − J) 6= 0 and F (1 − J) 6= 0.

If E (resp. F ) is of type I, we assume X = E(1− J) (resp. Y = F (1− J)).
There are the following four cases.

(1) If d = (1 | 1), then ωq = FX + FY + FXY + F(1− J). It is easy to see
that XY = Y X ;

(2) If d = (0 | 0), then ωq = F(1− J);
(3) If d = (1 | 0), then ωq = FX + F(1− J);
(4) If d = (0 | 1), then ωq = FY + F(1− J).

Let X+
q (A1) (resp. X−

q (A1), and X
0
q (A1)) be the subalgebra generated by

E (resp. F , and K±1
1 ,K±1

2 ). Considering the X+
q (A1)-module V with basis

{v0, v1}, defined by Ev0 = 0, Ev1 = v0, 1vi = vi (i = 0, 1), accordingly we
have {1, E} is a basis of X+

q (A1). Similarly, {1, F} is a basis of X−
q (A1). On

the other hand, X0
q (A1) ∼= F[K±1

1 ,K±1
2 ] as F-algebras, where F[K±1

1 ,K±1
2 ] is
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the algebra of Laurent polynomials. Hence, {Km
1 K

n
2 |m,n ∈ Z} is a basis of

X0
q (A1). Moreover, one has

Xq(A1) ∼= X−
q (A1)⊗X0

q (A1)⊗X+
q (A1).

To see these, one can refer to the statements of [3, Lemma 4.14–Theorem 4.21].
We set

(2.1) P si
i =







Ksi
i , if si > 0,

J, if si = 0,

K
−si
i , if si < 0.

We denote P s = P s1
1 P s2

2 if s = (s1, s2). It is easy to see P s is the basis of
ω0
q .

By Proposition 2.1, we have:

Proposition 2.2. Assume that wXq(A1) is of type d. Then the set

{F bP sEaJ | s=(s1, s2) ∈ Z×Z, and a, b ∈ Z2}
⋃

{0 6= F bEa(1−J) | a, b ∈ Z2}
forms a basis of wXq(A1).

3. The isomorphisms among weak quantum algebras

We assume that Xp(A1) is generated by E′, F ′,K ′
i,K

′−1
i , i = 1, 2. The

defining relations and comultiplications of Xp(A1) are the same as those of
Xq(A1) replaced q by p.

In this section, we give the sufficient and necessary conditions as weak Hopf
algebra isomorphisms between wXq(A1) and wXp(A1).

In first, we recall some concepts about group-like elements and primitive
elements of a coalgebra.

Let C be a coalgebra, x ∈ C. If ∆(x) = x⊗x, and ǫ(x) = 1, then x is called
a group-like element in C. Let G(C) denote the set of group-like elements. Let
g, h ∈ G(C). If

∆(x) = g ⊗ x+ x⊗ h,

then x is called a (g : h)-primitive element. Let Pg,h(C) denote the space
consisting of (g : h)-primitive elements.

Lemma 3.1. The space of (K l1
1 K

l2
2 : 1)-primitive elements of Xq(A1) is

P
K

l1
1 K

l2
2 ,1

(Xq(A1))=

{

FE + FFK1K
−1
2 + F(1−K1K

−1
2 ), if l1 = 1, l2 = −1,

F(1−K l1
1 K

l2
2 ), others.

Proof. Assume that x ∈ Xq(A1) is a (K l1
1 K

l2
2 : 1)-primitive element, then

∆(x) = K l1
1 K

l2
2 ⊗ x+ x⊗ 1.

We suppose that

x =
∑

i,j∈Z2, m1,m2

ai,j,m1,m2E
iF jKm1

1 Km2
2 ,
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we have

∆(x) = ∆





∑

i,j,m1,m2

ai,j,m1,m2E
iF jKm1

1 Km2
2





=
∑

m1,m2

a0,0,m1,m2K
m1
1 Km2

2 ⊗Km1
1 Km2

2

+
∑

m1,m2

a1,0,m1,m2

(

Km1+1
1 Km2−1

2 ⊗ EKm1
1 Km2

2 + EKm1
1 Km2

2 ⊗Km1
1 Km2

2

)

+
∑

m1,m2

a0,1,m1,m2

(

Km1
1 Km2

2 ⊗ FKm1
1 Km2

2 + FKm1
1 Km2

2 ⊗Km1−1
1 Km2+1

2

)

+
∑

m1,m2

a1,1,m1,m2

(

Km1+1
1 Km2−1

2 ⊗ EFKm1
1 Km2

2

+K1K
−1
2 FKm1

1 Km2
2 ⊗ EKm1−1

1 Km2+1
2

+EKm1
1 Km2

2 ⊗ FKm1
1 Km2

2 + EFKm1
1 Km2

2 ⊗Km1−1
1 Km2+1

2

)

.(3.1)

On the other hand

K l1
1 K

l2
2 ⊗ x+ x⊗ 1 = K l1

1 K
l2
2 ⊗

∑

a0,0,m1,m2K
m1
1 Km2

2

+K l1
1 K

l2
2 ⊗

∑

a1,0,m1,m2EK
m1
1 Km2

2

+K l1
1 K

l2
2 ⊗

∑

a0,1,m1,m2FK
m1
1 Km2

2

+K l1
1 K

l2
2 ⊗

∑

a1,1,m1,m2EFK
m1
1 Km2

2

+
∑

a0,0,m1,m2K
m1
1 Km2

2 ⊗ 1

+
∑

a1,0,m1,m2EK
m1
1 Km2

2 ⊗ 1

+
∑

a0,1,m1,m2FK
m1
1 Km2

2 ⊗ 1

+
∑

a1,1,m1,m2EFK
m1
1 Km2

2 ⊗ 1.(3.2)

Comparing the equations (3.1) and (3.2), we have if l1 = 1 and l2 = −1, then
x can be written as

aE + bFK1K
−1
2 + c(1−K1K

−1
2 ), a, b, c ∈ F.

If l1 6= 1 or l2 6= −1, then x can be written as

x = d(1 −K l1
1 K

l2
2 ), d ∈ F.

Therefore, we finish the proof. �

We now give the first main result.

Proposition 3.2. Xp(A1) ∼= Xq(A1) as Hopf algebras if and only if p = ±q±1.
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Proof. (⇒) Let φ : Xp(A1) −→ Xq(A1) be a Hopf algebra isomorphism. Then
φ must map group-like elements to group-like elements. Therefore we can
assume that

φ(K ′
1) = Km1

1 Km2
2 , φ(K ′

2) = Kn1
1 Kn2

2 .

Then we have

∆(φ(E′)) = (φ⊗ φ)(∆(E′)) = φ(K ′
1K

′−1
2 )⊗ φ(E′) + φ(E′)⊗ 1

= Km1−n1
1 Km2−n2

2 ⊗ φ(E′) + φ(E′)⊗ 1.

So φ(E′) is a (Km1−n1
1 Km2−n2

2 : 1)-primitive element. By Lemma 3.1, if m1 −
n1 6= 1, or m2 − n2 6= −1, we can assume φ(E′) = d(1−Km1−n1

1 Km2−n2
2 ) 6= 0.

This contradicts to the fact that φ(K ′
1)φ(E

′) = p−1φ(E′)φ(K ′
1).

Now, we focus on m1−n1 = 1,m2−n2 = −1. By Lemma 3.1, we can assume
that

φ(E′) = aE + bFK1K
−1
2 + c(1−K1K

−1
2 ).

Applying the algebra isomorphism φ to the relation K ′
1E

′ = p−1E′K ′
1, we get

φ(K ′
1)φ(E

′) = Km1

1 Km2

2 (aE + bFK1K
−1
2 + c(1 −K1K

−1
2 ))

= aKm1
1 Km2

2 E + bKm1
1 Km2

2 FK1K
−1
2

+ cKm1
1 Km2

2 (1−K1K
−1
2 )

= (−1)−m2aq−m1−m2EKm1
1 Km2

2

+ (−1)m2bqm1+m2FKm1+1
1 Km2−1

2

+ cKm1
1 Km2

2 (1−K1K
−1
2 ),

p−1φ(E′)φ(K ′
1) = Km1

1 Km2
2 (aE + bFK1K

−1
2 + c(1 −K1K

−1
2 ))

= p−1(aE + bFK1K
−1
2 + c(1−K1K

−1
2 ))Km1

1 Km2
2

= p−1aEKm1
1 Km2

2 + p−1bFKm1+1
1 Km2−1

2

+ p−1c(1−K1K
−1
2 )Km1

1 Km2

2

=⇒ (−1)−m2aq−m1−m2 = p−1a, (−1)m2bqm1+m2 = p−1b, c = p−1c.

Hence c = 0 since p and q are not a root of unity.
(1) If a 6= 0, then

(−1)m2qm1+m2 = p, b = 0, φ(E′) = aE.

Let us determine φ(F ′) as follows. Since F ′K ′
1K

′−1
2 is a (K ′

1K
′−1
2 : 1)-primitive

element, we can assume that

φ(F ′K ′
1K

′−1
2 ) = a′E + b′FK1K

−1
2 + c′(1−K1K

−1
2 ) = φ(F ′)K1K

−1
2 .

This implies that

φ(F ′) = b′FK
1−(m1−n1)
1 K

−1−(m2−n2)
2 = b′F
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by the defining relations. Moreover, applying φ to the relation

E′F ′ − F ′E′ =
K ′

2K
′−1
1 −K ′

1K
′−1
2

p− p−1
,

we get that

b′ =
q − q−1

a(p− p−1)
, and that φ(F ′) =

q − q−1

a(p− p−1)
F.

Therefore, we may assume that

m1 +m2 = n1 + n2 = l,m2 = m.

Then (−1)mql = p, the corresponding isomorphism has the form

φ(K ′
1) = K l−m

1 Km
2 , φ(K

′
2) = K l−m−1

1 Km+1
2 ,

φ(E′) = aE, φ(F ′) =
q − q−1

a(p− p−1)
F, (a 6= 0).

This isomorphism forces that there are a, b ∈ Z such that

φ(K ′
1
a
)φ(K ′

2
b
) = K1 or φ(K ′

1
a
)φ(K ′

2
b
) = K2.

It concludes that a(l − m) + b(l − m − 1) = 1, am + b(m + 1) = 0 or a(l −
m) + b(l −m − 1) = 0, am + b(m + 1) = 1. For the first case, we have l = 1,
a = 1 + m, b = −m, or l = −1, a = −1 −m, b = m. For the last case, we
have l = 1, a = m, b = 1 −m, or l = −1, a = −2 −m, b = m + 1. Therefore
p = (−1)mq±1.

If p = (−1)mq, then we get the weak Hopf algebra isomorphism

φ(K ′
1) = K1−m

1 Km
2 , φ(K

′
2) = K−m

1 Km+1
2 ,

φ(E′) = aE, φ(F ′) = (−1)ma−1F, (a 6= 0).

The inverse φ′ of φ is

φ′(K1) = (K ′
1)

1+m(K ′
2)

−m, φ′(K2) = (K ′
1)

m(K ′
2)

1−m,

φ′(E) = a−1E′, φ′(F ) = (−1)maF ′.

If p = (−1)mq−1, then we get the weak Hopf algebra isomorphism

φ(K ′
1) = K−1−m

1 Km
2 , φ(K

′
2) = K−2−m

1 Km+1
2 ,

φ(E′) = aE, φ(F ′) = (−1)m+1a−1F, (a 6= 0).

The inverse φ′ of φ is

φ′(K1) = (K ′
1)

−1−m(K ′
2)

m, φ′(K2) = (K ′
1)

−2−m(K ′
2)

m+1,

φ′(E) = a−1E′, φ′(F ) = (−1)m+1aF ′.

(2) If b 6= 0, then

(−1)m2qm1+m2 = p−1, a = 0, φ(E′) = bFK1K
−1
2 .
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We assume that

φ(F ′K ′
1K

′−1
2 ) = a′E + b′FK1K

−1
2 + c′(1−K1K

−1
2 ).

By the defining relations and more or less than the above discussion, we have

φ(F ′) = a′EK−1
1 K2.

In fact,

a′ =
q − q−1

b(p− p−1)

by applying the isomorphism φ to the relation

E′F ′ − F ′E′ =
K ′

2K
′−1
1 −K ′

1K
′−1
2

p− p−1
.

Therefore, we have that in this case

φ(F ′) =
q − q−1

b(p− p−1)
K−1

1 K2E.

Let m1+m2 = l,m2 = m, then p = (−1)mq−l, the corresponding isomorphism

φ(K ′
1) = K l−m

1 Km
2 , φ(K

′
2) = K l−m−1

1 Km+1
2 ,

φ(E′) = bFK1K
−1
2 , φ(F ′) =

q − q−1

b(p− p−1)
EK−1

1 K2, (b 6= 0).

The similar arguments as the case (1) show that p = (−1)mq±1.

If p = (−1)mq, we get the weak Hopf algebra isomorphism

φ(K ′
1) = K−1−m

1 Km
2 , φ(K

′
2) = K−2−m

1 Km+1
2 ,

φ(E′) = bFK1K
−1
2 , φ(F ′) = (−1)mb−1EK−1

1 K2, (b 6= 0).

The inverse φ′ of φ is

φ′(K1) = (K ′
1)

−1−m(K ′
2)

m, φ′(K2) = (K ′
1)

−2−m(K ′
2)

m+1,

φ′(E) = (−1)mbF ′K ′
1(K

′
2)

−1, φ′(F ) = b−1E′(K ′
1)

−1K ′
2.

If p = (−1)mq−1, then we get the weak Hopf algebra isomorphism

φ(K ′
1) = K1−m

1 Km
2 , φ(K

′
2) = K−m

1 Km+1
2 ,

φ(E′) = bFK1K
−1
2 , φ(F ′) = (−1)m+1b−1EK−1

1 K2, (b 6= 0).

The inverse φ′ of φ is

φ′(K1) = (K ′
1)

1+m(K ′
2)

−m, φ′(K2) = (K ′
1)

m(K ′
2)

1−m,

φ′(E) = (−1)m+1bF ′K ′
1(K

′
2)

−1, φ′(F ) = b−1E′(K ′
1)

−1K ′
2.

(⇐) If p = ±q±1, we can assume that p = (−1)mqn(n = ±1) and define the
map ψ : Xp(A1) −→ Xq(A1) as

ψ(K ′
1) = Kn−m

1 Km
2 , ψ(K

′
2) = Kn−m−1

1 Km+1
2 ,

ψ(E′) = aE, ψ(F ′) = (−1)m+δ
−1,na−1F,
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where

δ−1,n =

{

1, if n = −1,
0, if n 6= −1.

It is easy to see that ψ is a Hopf algebra isomorphism. �

Recall that

wXq(A1) ∼= ωq ⊕ ωq.

Let us consider the weak Hopf algebra isomorphism between wXq(A1) and
wXp(A1).

Theorem 3.3. For the weak Hopf algebra wXq(A1) of type (1|1), we have

wXp(A1) ∼= wXq(A1) as weak Hopf algebras if and only if p = ±q±1.

Proof. Let γ : wXp(A1) −→ wXq(A1) be an isomorphism of weak Hopf algebra.
It is easy to see that γ(J ′) = J since γ sends group-likes to group-likes.

By Proposition 2.1 it is well-known that

wXp(A1) = wp ⊕ wp, wXq(A1) = wq ⊕ wq,

and wp
∼= Xp(A1), wq

∼= Xq(A1). Note that wp is spanned by {E′iF ′j(1 −
J) | i, j = 0, 1}, and wq is spanned by {EiF j(1− J) | i, j = 0, 1}.

Assume that injp : wp −→ wXp(A1) is defined by

J ′ 7−→ J ′, E′J ′ 7−→ E′J ′, F ′J ′ 7−→ F ′J ′, K ′
i 7−→ K ′

i, K
′
i 7−→ K ′

i, i = 1, 2.

It is easy to see that injp is a bialgebra homomorphism (see [8]). Moreover, we
have wq = γ ◦ injp(wp). Since wXp(A1) ∼= wXq(A1), it follows that Xp(A1) ∼=
Xq(A1). By Proposition 3.2, p = ±q±1.

(⇐) Assume that p = ±q±1. Without loss of generality, we assume that
p = (−1)mqn(n = ±1) and define the map γ : wXp(A1) −→ wXq(A1) as
follows

γ(1) = 1, γ(J ′) = J

γ(P ′
1) = Pn−m

1 Pm
2 , γ(P ′

2) = Pn−m−1
1 Pm+1

2 ,

γ(E′) = E, γ(F ′) = (−1)m+δ
−1,nF,

where Pi and P
′
i are defined by (2.1) respectively. It is straightforward to see

that γ indeed can be extended to a weak Hopf algebra isomorphism.
The proof is finished. �

Remark 3.4. In general, if E,F are of type (1|0), (0|1), or (0|0), more or less
the same arguments show that Theorem 3.3 also hold.
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4. The representations of wXq(A1)

In this section, we consider the representation theory of wXq(A1) of type d.
Let V be a wXq(A1)-module and 0 6= v ∈ V . If K1v = λ1v,K2v = λ2v,

then λ = (λ1, λ2) is called a weight of V and v is called a weight vector. The
subspace

{0} 6= Vλ = {v ∈ V |K1v = λ1v,K2v = λ2v}
is called a weight space of λ = (λ1, λ2). If

Ev = 0, K1v = λ1v, K2v = λ2v,

then v is called a highest weight vector of λ = (λ1, λ2). If V = wXq(A1)v
and v is a highest weight vector, then V is called a highest weight module of
wXq(A1) generated by the highest weight vector v.

Lemma 4.1. Let wXq(A1) be the weak Hopf algebra of type d, V be a wXq(A1)-
module and 0 6= v ∈ V. If Kiv = λiv, i = 1, 2, λi ∈ F, then there are elements

λi ∈ F such that Kiv = λiv. Moreover, if λi 6= 0, then λi = λ−1
i ; if λi = 0,

then λi = 0.

Proof. Since Kiv = λiv, we have Kiv = KiKiKiv = Kiλ
2
i v = λiv. Therefore,

if λi 6= 0, Kiv = λ−1
i v. If λi = 0, then Kiv = KiKiKiv = 0. Hence λi = 0. �

Assume that (λ1, λ2, δ) ∈ F∗ × F∗ × {0, 1}, F∗ = F \ {0}, where

δ =

{

1, if λ21 = λ22,

0, if λ21 6= λ22.

Suppose λ1λ2 6= 0 let Vλ1,λ2,δ(n)(n = 0, 1) be the (n + 1)-dimensional vector
space with the basis {vi | 0 ≤ i ≤ n}. The module structure of Vλ1,λ2,δ(0) is a
one-dimensional highest weight wXq(A1)-module with δ = 1 and relations

Ev0 = Fv0 = 0, Kiv0 = λiv0, Kiv0 = λiv0, i = 1, 2.

The module structure of Vλ1,λ2,δ(1) is defined by

K1v0 = λ1v0, K1v0 = λ1v0, K2v0 = λ2v0, K2v0 = λ2v0,

K1v1 = qλ1v1, K1v1 = q−1λ1v1, K2v1 = −qλ2v1, K2v1 = −q−1λ2v1,

Ev0 = 0, Ev1 =
λ1λ2 − λ1λ2

q − q−1
v0,

Fv0 = v1, Fv1 = 0.

In fact, when λ1λ2 6= 0, we have λ1λ2 = λ1λ2 ⇔ λ21 = λ22.

Lemma 4.2. Assume that wXq(A1) is the weak Hopf algebra of any type d and

λ1λ2 6= 0. Let V be a highest weight wXq(A1)-module generated by a highest

weight vector v0 with weight λ = (λ1, λ2). Then

(1) V ∼= Vλ1,λ2,δ(n)(n = 0, 1);
(2) Vλ1,λ2,δ(n)

∼= Vλ′

1,λ
′

2,δ
′(n)(n = 0, 1) as wXq(A1)-modules if and only if

(λ1, λ2, δ) = (λ′1, λ
′
2, δ

′).
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Proof. Straightforward. �

Assume that λ1λ2 = 0 and wXq(A1) is a weak Hopf algebra of type d = (0|1)
or (1|1). Let W (n)(n = 0, 1) be the (n+ 1)-dimensional vector space with the
basis {wi|0 ≤ i ≤ n}. It is noted that if λ1λ2 = 0 and W (n) is a wXq(A1)-

module, both λ1 and λ2 must be zero since K1K1 = K2K2 = J . In this case,
the wXq(A1)-module structure on W (n) is given as follows

K1wi = K2wi = 0, K1wi = K2wi = 0, 0 ≤ i ≤ n,

Ewi = 0, 0 ≤ i ≤ n,

Fwj = wj+1, 0 ≤ j ≤ n− 1,

Fwn = 0.

Remark 4.3. If wXq(A1) is a weak Hopf algebra with d = (1|0) or (0|0), we only
can define the wXq(A1)-moduleW (0). For, if F is of type II, thenK1FK1w0 =
q1Fw0 = 0 and Fw0 = 0. On the other hand, if wXq(A1) is of type d = (0|1)
or (1|1), thenW (1) is an indecomposable wXq(A1)-module of dimension 2, but
is not simple since W (0) is a proper submodule of W (1).

Theorem 4.4. Assume that wXq(A1) is the weak Hopf algebra of type d =
(k|k̄). LetM be a highest weight wXq(A1)-module. ThenM ∼=W (t)(0 ≤ t ≤ k̄)
or M ∼= Vλ1,λ2,δ(n), where n = 0, 1.

Proof. Since M is a highest weight wXq(A1)-module, M has a highest weight
vector v0 such that M = wXq(A1)v0, and

Ev0 = 0, Kiv0 = λiv0, i = 1, 2.

Let λ1λ2 6= 0. By Lemma 4.2, we have M ∼= Vλ1,λ2,δ(n)(n = 0, 1).
Let λ1λ2 = 0. If F is of type II, then we have Fv0 = 0 because of the

relations K1FK1 = q1F and K2FK2 = q−1
2 F . Hence we obtain M ∼= W (0).

If F is of type I, it is easy to check that M ∼= W (0) when dimM = 1. If
dimM 6= 1, we have Fv0 6= 0 by Proposition 2.2. If Fv0 = av0 for some non-
zero a ∈ F, then FFv0 = a2v0 = 0 and it is a contradiction. So {v0, Fv0} is
linearly independent. If we take v1 = Fv0, then we have

Ev0 = 0, Ev1 = EFv0 = FEv0 = 0,

Fv0 = v1, Fv1 = 0.

Since M is generated by v0, we have M ∼=W (1).
In conclusion, M ∼=W (t)(0 ≤ t ≤ k̄) or M ∼= Vλ1,λ2,δ(n), n = 0, 1. �

Assume η21 = η22 , wXq(A1) is of type d = (k|k). LetMη1,η2(m,n) be a vector
space spanned by {X iY j | 0 ≤ i ≤ m, 0 ≤ j ≤ n}, where 0 ≤ m ≤ k, 0 ≤ n ≤
k. Then it is straightforward to see that Mη1,η2(m,n) is a wXq(A1)-module
defined by

K1(X
iY j) = qj−iη1X

iY j , K2(X
iY j) = (−q)j−iη2X

iY j ,

K1(X
iY j) = qi−jη1X

iY j , K2(X
iY j) = (−q)i−jη2X

iY j ,
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E(X iY j) = X i+1Y j , 0 ≤ i < m, E(XmY j) = 0,

F (X iY j) = X iY j+1, 0 ≤ j < n, F (X iY n) = 0.

Remark 4.5. If η1 = η2 = 0, we denote M0,0(m,n) by M(m,n) for simplicity.
Specially, M(0, n) ∼= W (n). Under the condition of η1 = η2 = 0, if wXq(A1)
is of type d = (1|1), we can define the wXq(A1)-modules M(0, 0), M(1, 0),
M(0, 1), M(1, 1); if wXq(A1) is of type d = (1|0), we can define M(0, 0),
M(1, 0); if wXq(A1) is of type d = (0|1), we can define M(0, 0), M(0, 1); if
wXq(A1) is of type d = (0|0), we can only define M(0, 0).

If we can define wXq(A1)-modules Mη1,η2(1, 0),Mη1,η2(0, 1),Mη1,η2(1, 1) for
some type d, then they are indecomposable and Mη1,η2(0, 0) is simple. For
example, assume that wXq(A1) is of type d = (1|1). Let 0 6= M1 be any
submodule of Mη1,η2(1, 1). For any 0 6= x ∈M1, x can be written as

x = a00X
0Y 0 + a10X

1Y 0 + a01X
0Y 1 + a11X

1Y 1.

There is at least a nonzero coefficient. It yields that X1Y 1 ∈ M1 for all
cases. This means that FX1Y 1 is the submodule of any non-zero submodule of
Mη1,η2(1, 1). HenceMη1,η2(1, 1) is indecomposable. The other cases are similar
to see.

5. The Clebsch-Gordan decomposition for wXq(A1)

In this section, we assume that the weak Hopf algebra wXq(A1) is of type
(1|1) and consider tensor products of their two the highest weight wXq(A1)-
modules.

Let V andW be twowXq(A1)-modules, recall that V ⊗W is also a wXq(A1)-
module defined by

E(v ⊗ w) = K1K2v ⊗ Ew + Ev ⊗ w,

F (v ⊗ w) = v ⊗ Fw + Fv ⊗K1K2w,

Ki(v ⊗ w) = Kiv ⊗Kiw,

Ki(v ⊗ w) = Kiv ⊗Kiw.

We denote
mW (n) =W (n)⊕W (n)⊕ · · · ⊕W (n)

︸ ︷︷ ︸

m copies

.

Theorem 5.1. Assume that the weak Hopf algebra wXq(A1) is of type d =
(1|1). Then

(1) Vλ1,λ2,δ(m)⊗ Vλ′

1,λ
′

2,δ
′(n) ∼= Vλ1λ′

1,λ2λ′

2,δδ
′(m+ n), m+ n ≤ 1;

(2) If λ21λ
′
1
2 6= λ22λ

′
2
2
, then

Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼= Vλ1λ′

1,λ2λ′

2,0
(1)⊕ Vqλ1λ′

1,(−q)λ2λ′

2,0
(1);

if λ21λ
′
1
2
= λ22λ

′
2
2
, then

Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼=Mqλ1λ′

1,(−q)λ2λ′

2
(1, 1);
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(3) Vλ1,λ2,1(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼= Vλ1λ′

1,λ2λ′

2,δ
′(1)⊕ Vqλ1λ′

1,(−q)λ2λ′

2,δ
′(1);

(4) Vλ1,λ2,1(m)⊗W (n) ∼= (m+ 1)W (n), Vλ1,λ2,0(1)⊗W (n) ∼=M(1, n);
(5) W (0)⊗ Vλ1,λ2,δ(n)

∼=W (n), W (1)⊗ Vλ1,λ2,δ(n)
∼= (n+ 1)W (1);

(6) W (m)⊗W (n) ∼= (m+ 1)W (n),

where m,n = 0 or 1.

Proof. Keeping all notations as Section 4.
(1) We consider the following cases, the others can be obtained in a similar

way.
Case 1. For Vλ1,λ2,1(0)⊗ Vλ′

1,λ
′

2,1
(1), we have

Ki(v0 ⊗ v′0) = λiλ
′
iv0 ⊗ v′0,Ki(v0 ⊗ v′0) = λiλ

′

iv0 ⊗ v′0,

E(v0 ⊗ v′0) = 0, E(v0 ⊗ v′1) = 0, F (v0 ⊗ v′0) = v0 ⊗ v′1, F (v0 ⊗ v′1) = 0.

So

Vλ1,λ2,1(0)⊗ Vλ′

1,λ
′

2,1
(1) ∼= Vλ1λ′

1,λ2λ′

2,1
(1).

Case 2. For Vλ1,λ2,1(0)⊗ Vλ′

1,λ
′

2,0
(1), note that

Ki(v0 ⊗ v′0) = λiλ
′
iv0 ⊗ v′0, Ki(v0 ⊗ v′0) = λiλ

′

iv0 ⊗ v′0,

E(v0 ⊗ v′0) = 0, F (v0 ⊗ v′0) = v0 ⊗ v′1, F (v0 ⊗ v′1) = 0,

E(v0 ⊗ v′1) = K1K2v0 ⊗ Ev′1 =
λ1λ

′

1λ2λ
′
2 − λ1λ

′
1λ2λ

′

2

q − q−1
v0 ⊗ v′0 6= 0.

Then

Vλ1,λ2,1(0)⊗ Vλ′

1,λ
′

2,0
(1) ∼= Vλ1λ′

1,λ2λ′

2,0
(1).

Case 3. Considering Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,1
(0), note that

Ki(v0 ⊗ v′0) = λiλ
′
iv0 ⊗ v′0, Ki(v0 ⊗ v′0) = λiλ

′

iv0 ⊗ v′0,

E(v0 ⊗ v′0) = 0, F (v0 ⊗ v′0) = λ
′

1λ
′

2v1 ⊗ v′0, F (λ
′

1λ
′

2v1 ⊗ v′0) = 0,

E(F (v0 ⊗ v′0)) = λ
′

1λ
′

2(Ev1 ⊗ v′0) =
λ1λ

′

1λ2λ
′
2 − λ1λ

′
1λ2λ

′

2

q − q−1
v0 ⊗ v′0 6= 0.

So

Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,1
(0) ∼= Vλ1λ′

1,λ2λ′

2,0
(1).

For Vλ1,λ2,1(0)⊗Vλ′

1,λ
′

2,1
(0) and Vλ1,λ2,1(1)⊗Vλ′

1,λ
′

2,1
(0), we also can get the

similar result.
It follows that

Vλ1,λ2,δ(m)⊗ Vλ′

1,λ
′

2,δ
′(n) ∼= Vλ1λ′

1,λ2λ′

2,δδ
′(m+ n), m+ n ≤ 1.

(2) Considering Vλ1,λ2,δ(1)⊗ Vλ′

1,λ
′

2,δ
′(1), we have

Ki(v0 ⊗ v′0) = λiλ
′
iv0 ⊗ v′0, Ki(v0 ⊗ v′0) = λiλ

′

iv0 ⊗ v′0,

E(v0 ⊗ v′0) = K1K2v0 ⊗ Ev′0 + Ev0 ⊗ v′0 = 0,

F (v0 ⊗ v′0) = v0 ⊗ Fv′0 + Fv0 ⊗K1K2v
′
0 = v0 ⊗ v′1 + λ

′

1λ
′
2v1 ⊗ v′0,
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E(F (v0 ⊗ v′0)) = E(v0 ⊗ v′1 + λ
′

1λ
′
2v1 ⊗ v′0) =

λ1λ
′

1λ2λ
′
2 − λ1λ

′
1λ2λ

′

2

q − q−1
v0 ⊗ v′0,

F (F (v0 ⊗ v′0)) = F (v0 ⊗ v′1 + λ
′

1λ
′
2v1 ⊗ v′0) = 0.

So v0 ⊗ v′0 is a wXq(A1)-module highest weight vector and

wXq(A1)(v0 ⊗ v′0)
∼= Vλ1λ′

1,λ2λ′

2,δ
′′(1),

where

δ′′ =

{

1, if λ21λ
′
1
2
= λ22λ

′
2
2
,

0, if λ21λ
′
1
2 6= λ22λ

′
2
2
.

Now we consider other submodules of

Vλ1,λ2,δ(1)⊗ Vλ′

1,λ
′

2,δ
′(1).

If δ = 0, this means that λ1λ2 − λ1λ2 6= 0, we take

ν0 = (λ1λ2 − λ1λ2)v0 ⊗ v′1 − (λ
′

1λ
′
2 − λ′1λ

′

2)λ1λ2v1 ⊗ v′0 6= 0.

Then

K1ν0 = qλ1λ
′
1ν0, K2(ν) = −qλ2λ′2ν0,

K1ν0 = q−1λ1λ
′

1ν0, K2ν0 = −q−1λ2λ
′

2ν0,

and

Eν0 = 0,

Fν0 = (λ1λ
′
1λ2λ

′

2 − λ1λ
′

1λ2λ
′
2)v1 ⊗ v′1 := ν1,

E(ν1) = E(F (ν0)) =
λ1λ

′
1λ2λ

′

2 − λ1λ
′

1λ2λ
′
2

q − q−1
ν0,

F (F (ν0)) = 0.

If λ1λ
′
1λ2λ

′

2 − λ1λ
′

1λ2λ
′
2 6= 0, hence δ′′ = 0, then ν0 is another wXq(A1)-

module highest weight vector and

wXq(A1)ν0 ∼= Vqλ1λ′

1,(−q)λ2λ′

2,0
(1).

It follows that

Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼= Vλ1λ′

1,λ2λ′

2,0
(1)⊕ Vqλ1λ′

1,(−q)λ2λ′

2,0
(1).

If λ1λ
′
1λ2λ

′

2 −λ1λ
′

1λ2λ
′
2 = 0, hence δ′′ = 1, then ν0 is a constant multiple of

F (v0 ⊗ v′0). We have

K1(v1 ⊗ v′0) = qλ1λ
′
1v1 ⊗ v′0, K2(v1 ⊗ v′0) = −qλ2λ′2v1 ⊗ v′0,

E(v1 ⊗ v′0) = Ev1 ⊗ v′0 =
λ1λ2 − λ1λ2

q − q−1
v0 ⊗ v′0, E(Ev1 ⊗ v′0) = 0,

F (v1 ⊗ v′0) = v1 ⊗ Fv′0 = v1 ⊗ v′1, F (v1 ⊗ v′1) = 0,

F (E(v1 ⊗ v′0)) =
λ1λ2 − λ1λ2

q − q−1
F (v0 ⊗ v′0),
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E(v1 ⊗ v′1) = E(F (v1 ⊗ v′0)) =
λ1λ2 − λ1λ2

q − q−1
v0 ⊗ v′1 −

λ
′

1λ
′
2 − λ′1λ

′

2

q − q−1
λ1λ2v1 ⊗ v′0

=
λ1λ2 − λ1λ2

q − q−1
(v0 ⊗ v′1 + λ

′

1λ
′
2v1 ⊗ v′0) = F (E(v1 ⊗ v′0)).

Let X iY j = EiF j(v1 ⊗ v′0), where i, j = 0 or 1.

K1(X
0Y 0) = qλ1λ

′
1X

0Y 0, K2(X
0Y 0) = −qλ2λ′2X0Y 0,

E(X0Y 0) = X1Y 0 = E(v1 ⊗ v′0), E(X1Y 0) = 0,

F (X0Y 0) = X0Y 1 = F (v1 ⊗ v′0), F (X
0Y 1) = 0,

E(X0Y 1) = E(F (v1 ⊗ v′0)) = X1Y 1 = E(v1 ⊗ v′1), E(X1Y 1) = 0,

F (X1Y 0) = F (E(v1 ⊗ v′0)) = X1Y 1, F (X1Y 1) = 0.

Thus
Vλ1,λ2,0(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼=Mqλ1λ′

1,−qλ2λ′

2
(1, 1).

(3) Assume that λ21 = λ22, this means that δ = 1. We have

K1(v1 ⊗ v′0) = qλ1λ
′
1v1 ⊗ v′0,K2(v1 ⊗ v′0) = −qλ2λ′2v1 ⊗ v′0,

K1(v1 ⊗ v′0) = q−1λ1λ
′

1v1 ⊗ v′0,K2(v1 ⊗ v′0) = −q−1λ2λ
′

2v1 ⊗ v′0,

E(v1 ⊗ v′0) = 0,

F (v1 ⊗ v′0) = v1 ⊗ v′1,

E(F (v1 ⊗ v′0)) = E(v1 ⊗ v′1) =
λ1λ

′
1λ2λ

′

2 − λ1λ
′

1λ2λ
′
2

q − q−1
v1 ⊗ v′0,

F (F (v1 ⊗ v′0)) = 0.

So v1 ⊗ v′0 is a wXq(A1)-module highest weight vector and

wXq(A1)(v1 ⊗ v′0)
∼= Vqλ1λ′

1,(−q)λ2λ′

2,δ
′(1).

On the other hand, from the proof of the statement (2) we see that

wXq(A1)(v0 ⊗ v′0)
∼= Vλ1λ′

1,λ2λ′

2,δ
′(1).

It follows that

Vλ1,λ2,1(1)⊗ Vλ′

1,λ
′

2,δ
′(1) ∼= Vλ1λ′

1,λ2λ′

2,δ
′(1)⊕ Vqλ1λ′

1,(−q)λ2λ′

2,δ
′(1).

(4) We consider the following cases.
Case 1. For Vλ1,λ2,1(0)⊗W (0), we have

Ki(v0 ⊗ w0) = 0,

E(v0 ⊗ w0) = K1K2v0 ⊗ Ew0 + Ev0 ⊗ w0 = 0,

F (v0 ⊗ w0) = v0 ⊗ Fw0 + Fv0 ⊗K1K2w0 = 0,

hence
Vλ1,λ2,1(0)⊗W (0) ∼=W (0).

Case 2. For Vλ1,λ2,1(1)⊗W (1), we get

Ki(v0 ⊗ w0) = 0, Ki(v1 ⊗ w0) = 0,
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E(v0 ⊗ w0) = 0, F (v0 ⊗ w0) = v0 ⊗ w1,

E(v0 ⊗ w1) = 0, F (v0 ⊗ w1) = 0,

E(v1 ⊗ w0) = 0, F (v1 ⊗ w0) = v1 ⊗ w1,

E(v1 ⊗ w1) = 0, F (v1 ⊗ w1) = 0.

Thus
Vλ1,λ2,1(1)⊗W (1) ∼= 2W (1).

Case 3. Considering the case Vλ1,λ2,0(1)⊗W (0). Note that λ1λ2 6= λ1λ2, we
have

Ki(v0 ⊗ w0) = 0, Ki(v1 ⊗ w0) = 0,

E(v0 ⊗ w0) = 0, F (v0 ⊗ w0) = 0,

E(v1 ⊗ w0) = Ev1 ⊗ w0 =
λ1λ2 − λ1λ2

q − q−1
v0 ⊗ w0 6= 0,

E(E(v1 ⊗ w0)) = 0, F (v1 ⊗ w0) = v1 ⊗ Fw0 = 0.

Now, we assume that X iY j = EiF j(v1 ⊗ w0), where i = 0 or 1, and j = 0.

Ki(X
0Y 0) = 0,

E(X0Y 0) = X1Y 0 = E1F 0(v1 ⊗ w0) = E(v1 ⊗ w0),

E(X1Y 0) = E(E(v1 ⊗ w0)) = 0,

F (X0Y 0) = X0Y 1 = E0F 1(v1 ⊗ w0) = F (v1 ⊗ w0) = 0.

Therefore
Vλ1,λ2,1(1)⊗W (0) ∼=M(1, 0).

Case 4. For Vλ1,λ2,0(1)⊗W (1), this means that λ1λ2 − λ1λ2 6= 0. We have

Ki(vi ⊗ wj) = 0, E(v0 ⊗ w0) = 0, F (v0 ⊗ w0) = v0 ⊗ w1,

E(v0 ⊗ w1) = 0, F (v0 ⊗ w1) = 0,

E(v1 ⊗ w0) = Ev1 ⊗ w0 =
λ1λ2 − λ1λ2

q − q−1
v0 ⊗ w0,

F (v1 ⊗ w0) = v1 ⊗ Fw0 = v1 ⊗ w1, F (v1 ⊗ w1) = 0,

E(v1 ⊗ w1) = Ev1 ⊗ w1 =
λ1λ2 − λ1λ2

q − q−1
v0 ⊗ w1.

Let X iY j = EiF j(v1 ⊗ w0), where i, j = 0 or 1.

Ki(X
0Y 0) = 0,

E(X0Y 0) = X1Y 0 = E1F 0(v1 ⊗ w0) = E(v1 ⊗ w0),

E(X1Y 0) = E(E(v1 ⊗ w0)) = 0,

E(X0Y 1) = X1Y 1 = E1F 1(v1 ⊗ w0) = E(v1 ⊗ w1),

E(X1Y 1) = E(E(v1 ⊗ w1)) = 0,

F (X0Y 0) = X0Y 1 = E0F 1(v1 ⊗ w0) = F (v1 ⊗ w0),

F (X0Y 1) = F (F (v1 ⊗ w0)) = 0,
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F (X1Y 0) = X1Y 1 = E1F 1(v1 ⊗ w0) = E(v1 ⊗ w1),

F (X1Y 1) = F (F (v1 ⊗ w0)) = 0.

Therefore

Vλ1,λ2,0(1)⊗W (1) ∼=M(1, 1).

For Vλ1,λ2,1(0)⊗W (1) and Vλ1,λ2,1(1)⊗W (0), in a similar way we get

Vλ1,λ2,1(0)⊗W (1) ∼=W (1),

Vλ1,λ2,1(1)⊗W (0) ∼=W (0)⊕W (0).

(5) Note that E(W (m) ⊗ Vλ1,λ2,δ(n)) = 0. We consider the action of F on
W (m)⊗ Vλ1,λ2,δ(n).

Case 1. Considering W (0)⊗ Vλ1,λ2,δ(0), we have

Ki(w0 ⊗ v0) = 0, F (w0 ⊗ v0) = 0,

hence

W (0)⊗ Vλ1,λ2,δ(0)
∼=W (0).

Case 2. For W (0)⊗ Vλ1,λ2,δ(1), it is easy to see that

Ki(w0 ⊗ v0) = 0,

F (w0 ⊗ v0) = w0 ⊗ Fv0 = w0 ⊗ v1, F (w0 ⊗ v1) = 0.

Therefore

W (0)⊗ Vλ1,λ2,δ(1)
∼=W (1).

Case 3. For W (1)⊗ Vλ1,λ2,δ(0), note that λ1λ2 6= 0, and we get

Ki(w0 ⊗ v0) = 0,

F (w0 ⊗ v0) = w0 ⊗ Fv0 + Fw0 ⊗K1K2v0 = λ1λ2w1 ⊗ v0 6= 0,

F (λ1λ2w1 ⊗ v0) = λ1λ2w1 ⊗ Fv0 = 0.

Thus

W (1)⊗ Vλ1,λ2,δ(0)
∼=W (1).

Case 4. Considering the case W (1)⊗ Vλ1,λ2,δ(1), we have

Ki(w0 ⊗ v0) = 0, F (w0 ⊗ v0) = w0 ⊗ v1 + λ1λ2w1 ⊗ v0,

F (w0 ⊗ v1 + λ1λ2w1 ⊗ v0) = F (w0 ⊗ v1) + F (λ1λ2w1 ⊗ v0)

= Fw0 ⊗K1K2v1 + w1 ⊗ Fλ1λ2v0 = 0.

This means that

wXq(A1)(w0 ⊗ v0) ∼=W (1).

Assume that w = aw0 ⊗ v1 + bw1 ⊗ v0, b 6= aλ1λ2,

Kiw = Ki(aw0 ⊗ v1 + bw1 ⊗ v0) = 0,

Fw = aF (w0 ⊗ v1) + bF (w1 ⊗ v0) = (b− aλ1λ2)w1 ⊗ v1 6= 0,

F (F (w)) = 0.
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It follows that wXq(A1)w ∼=W (1). Hence

W (1)⊗ Vλ1,λ2,δ(1) = wXq(A1)(w0 ⊗ v0)⊕wXq(A1)w ∼=W (1)⊕W (1).

(6) It is easy to see that E(W (m) ⊗W (n)) = 0. Consider the action of F
on W (m)⊗W (n).

Case 1. For W (0)⊗W (0), F (w0 ⊗ w′
0) = 0, hence

W (0)⊗W (0) ∼=W (0).

Case 2. For W (0)⊗W (1), we have

Ki(w0 ⊗ w′
0) = 0,

F (w0 ⊗ w′
0) = w0 ⊗ Fw′

0 = w0 ⊗ w′
1, F (w0 ⊗ w′

1) = 0.

So

W (0)⊗W (1) ∼=W (1).

Case 3. For W (1)⊗W (0), we get

Ki(w0 ⊗ w′
0) = 0, F (w0 ⊗ w′

0) = w0 ⊗ Fw′
0 = 0,

Ki(w1 ⊗ w′
0) = 0, F (w1 ⊗ w′

0) = w1 ⊗ Fw′
0 = 0.

Consequently

W (1)⊗W (0) ∼=W (0)⊕W (0).

Case 4. For W (1)⊗W (1), we get

Ki(w0 ⊗ w′
0) = 0, Ki(w1 ⊗ w′

0) = 0,

F (w0 ⊗ w′
0) = w0 ⊗ Fw′

0 = w0 ⊗ w′
1, F (w0 ⊗ w′

1) = 0,

F (w1 ⊗ w′
0) = w1 ⊗ Fw′

0 = w1 ⊗ w′
1, F (w1 ⊗ w′

1) = 0.

Therefore

W (1)⊗W (n) ∼=W (n)⊕W (n) = 2W (n).

The proof is finished. �

Theorem 5.1 for wXq(A1) of other types d can be discussed in a similar way.
It is noted that if E (resp. F ) is of type II, for two wXq(A1)-module V,W, we
have to define the wXq(A1)-module on V ⊗W by

E(v ⊗ w) = K1K2v ⊗ Ew + Ev ⊗ Jw,

(resp. F (v ⊗ w) = Jv ⊗ Fw + Fv ⊗K1K2w).

Theorem 5.1 should be restated. Explicitly,

• If wXq(A1) is of d = (0|1), Theorem 5.1(4) is replaced by
(4′) Vλ1,λ2,δ(m)⊗W (n) ∼= (m+ 1)W (n).

• If wXq(A1) is of d = (1|0), Theorem 5.1(4)(5)(6) are respectively re-
placed by

(4′) Vλ1,λ2,0(0)⊗W (0) ∼=W (0), Vλ1,λ2,δ(1)⊗W (0) ∼=M(1, 0),
(5′) W (0)⊗ Vλ1,λ2,δ(n)

∼= (n+ 1)W (0),
(6′) W (0)⊗W (0) ∼=W (0).



484 C. CHENG AND S. YANG

• If wXq(A1) is of d = (0|0), Theorem 5.1(4)(5)(6) are respectively re-
placed by

(4′) Vλ1,λ2,δ(m)⊗W (0) ∼= (m+ 1)W (0),
(5′) W (0)⊗ Vλ1,λ2,δ(n)

∼= (n+ 1)W (0),
(6′) W (0)⊗W (0) ∼=W (0).
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