DOI QR코드

DOI QR Code

Analysis of a Time-constant Effect in the Q-filter for Designing a Disturbance Observer: Balancing Control of a Single-wheel Robot

외란관측기 설계를 위한 Q필터 시정수 영향 분석 : 외바퀴 로봇의 균형 제어 응용

  • Lee, Sangdeok (Department of Mechatronics Engineering, Chungnam National University) ;
  • Jung, Seul (Department of Mechatronics Engineering, Chungnam National University)
  • 이상덕 (충남대학교 메카트로닉스공학과) ;
  • 정슬 (충남대학교 메카트로닉스공학과)
  • Received : 2016.06.10
  • Accepted : 2016.10.31
  • Published : 2016.11.25

Abstract

Disturbance Observer(DOB) based control is considered for the purpose of the balancing performance enhancement in a single-wheel robot. Design of DOB can be folded into two parts, the inverse model of the plant and the Q-filter. The inverse model is derived from the inverted stick model and a Q-filter is designed to stabilize the inverse model. In this paper, a Q31 filter is designed and its effect is evaluated by experimental studies. The time constant provides a complimentary characteristic between the disturbance suppression and the sensor noise immunity. Therefore, suitable selection of the time-constant must be considered. Comparative experiments are conducted to investigate the control performances when three different Q filters are respectively applied in the DOB. Through the analysis of the experimental results, a time constant is designed to have a proper value in the design of DOB for balancing control of a single-wheel robot.

본 논문에서는 외바퀴 로봇의 균형 제어 성능을 향상할 목적으로 외란관측기를 사용한다. 외란관측기의 설계는 역 공칭 모델 설계와 Q필터 설계의 두 과정으로 구성된다. 외바퀴 로봇의 역 공칭 모델을 역 스틱 모델로 부터 유도하고 역 공칭 모델의 안정화를 위한 Q필터를 설계한다. 이 과정에서 Q31의 형태를 갖는 필터를 설계하고 Q필터 시정수의 영향에 관한 실험적인 검증 결과를 제시한다. 시정수는 외란 억제 대역폭을 결정하는 역할을 하지만 외란 억제와 센서 잡음 내성은 상보적인 특성을 갖고 있다. 그러므로 전체 시스템을 고려하여 적절한 시정수가 선택되어야만 한다. 이를 해결하기 위해 3개의 서로 다른 시정수가 외란관측기에 각각 사용되었을 때의 제어 성능을 비교하는 실험을 수행한다. 결과 분석을 바탕으로 한 바퀴 로봇의 균형 제어에 대한 외란관측기 설계에 적합한 시정수 변수의 설계 범위를 제안한다.

Keywords

References

  1. W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-Observer-Based control and related methods-an overview," IEEE Trans. on Industrial Electronics, Vol. 63, no. 2, pp. 1083-1095, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478397
  2. B. Du, S. Wu, S. Han, and S. Cui, "Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor," IEEE Trans. on Industrial Electronics, Vol. 63, no. 5, pp. 3019-3027, May 2016. https://doi.org/10.1109/TIE.2016.2518123
  3. D. Xing, J. Su, Y. Liu, and J. Zhong, "Robust approach for humanoid joint control based on a disturbance observer," IET Control Theory Application, Vol. 5, no. 14, pp. 1630-1636, Sep. 2011. https://doi.org/10.1049/iet-cta.2010.0604
  4. E. Schrijver and J. V. Dijk, "Disturbance observers for rigid mechanical systems: equivalence, stability, and design," Journal of Dynamic Systems, Measurement, and Control, Vol. 124, no. 4, pp. 539-548, 2002. https://doi.org/10.1115/1.1513570
  5. S. Katsura, Y. Matsumoto, and K. Ohnishi, "Modeling of force sensing and validation of disturbance observer for force control," IEEE Trans. on Industrial Electronics, Vol. 54, no. 1, pp. 530-538, Feb. 2007. https://doi.org/10.1109/TIE.2006.885459
  6. Y. Ohba, K. Ohishi, S. Katsura, Y. Yoshizawa, and K. Majima, "Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon," IEEE Trans. on Industrial Electronics, Vol. 56, no. 8, pp. 2955-2960, Aug. 2009. https://doi.org/10.1109/TIE.2009.2024444
  7. W. Kim and C. C. Chung, "Robust output feedback control for unknown non-linear systems with external disturbance," IET Control Theory & Applications, Vol. 10, no. 2, pp. 173-182, 2016. https://doi.org/10.1049/iet-cta.2014.1299
  8. J. H. Choi, J. S. Kim, and K. H. Kim, "Robust tracking performance of linear induction motor-based automatic picking system using a high-gain disturbance observer," IET Electric Power Applications, Vol. 10, no. 1, pp. 45-53, 2016. https://doi.org/10.1049/iet-epa.2015.0146
  9. H. Pan, W. Sun, H. Gao, and X. Jing, "Disturbance observer-based adaptive tracking control with actuator saturation and its application," IEEE Trans. Automation Science and Engineering, Vol. 13, no. 2, pp. 868-875, May 2016. https://doi.org/10.1109/TASE.2015.2414652
  10. M. Ruderman, "Tracking control of motor drives using feedforward friction observer," IEEE Trans. on Industrial Electronics, Vol. 61, no. 7, pp. 3727-3735, July 2014. https://doi.org/10.1109/TIE.2013.2264786
  11. M. Ruderman and M. Iwasaki, "Observer of onlinear friction dynamics for motion control," IEEE Trans. on Industrial Electronics, Vol. 62, no. 9, pp. 5941-5949, Sep. 2015. https://doi.org/10.1109/TIE.2015.2435002
  12. K. Kong and M. Tomizuka, "Nominal model manipulation for enhancement of stability robustness for disturbance observer-based systems", International Journal of Control, Automation, and Systems, Vol. 11, no. 1, pp. 12-20, Jan. 2013. https://doi.org/10.1007/s12555-011-9214-6
  13. S. D. Lee and S. Jung, "Parameter estimation of a single-wheel robot by a recursive least Square method for a disturbance observer", ICROS 2016, pp. 235-236, Mar. 2016.
  14. E. T. Kim, "Robust tracking control of a flexible joint robot system using a CMAC neural network disturbance observer", Journal of the Institute of Electronics Engineers of Korea SC, Vol. 40, no. 5, pp. 1-9, Sep. 2003.
  15. K. W. Song, "Robust tracking control of a flexible joint robot system using a CMAC neural network disturbance observer", Journal of the Institute of Electronics Engineers of Korea SC, Vol. 44, no. 1, pp. 33-39, Jan. 2007.
  16. S. D. Lee and S. Jung "Experimental study and design of a disturbance observer for steering stabilization of a one-wheeled balancing robot", JICROS, Vol. 22, no. 5, pp. 353-360, May 2016.