We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$$\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.
We here investigate an existence and uniqueness of the nontrivial, nonnegative solution of a nonlinear ordinary differential equation: $$[\mid(w^m)]'\mid^{p-2}(w^m)']'\;+\;{\beta}rw'\;+\;{\alpha}w\;+\;(w^q)'\;=\;0$$ satisfying a specific decay rate: $lim_{r\rightarrow\infty}\;r^{\alpha/\beta}w(r)$ = 0 with $\alpha$ := (p - 1)/[pd-(m+1)(p-1)] and $\beta$:= [q-m(p-1)]/[pd-(m+1)(p-1)]. Here m(p-1) > 1 and m(p - 1) < q < (m+1)(p-1). Such a solution arises naturally when we study a very singular solution for a doubly degenerate equation with nonlinear convection: $$u_t\;=\;[\mid(u^m)_x\mid^{p-2}(u^m)_x]_x\;+\;(u^q)x$$ defined on the half line.
In this paper, we give the condition for the existence of the q-th roots of p-adic numbers in $\mathbb{Q}_p$ with an integer $q{\geq}2$ and (p, q) = 1. We have the conditions for the existence of the fifth root and the seventh root of p-adic numbers in $\mathbb{Q}_p$, respectively.
We give a proof of the distribution relation for q-Bernoulli polynomials $B_{k}$(x : q) by using q-integral and evaluate the values of p-adic q-L-function.n.
Given a real number α, the Lagrange number of α is the supremum of all real numbers L > 0 for which the inequality |α - p/q| < (Lq2)-1 holds for infinitely many rational numbers p/q. All Lagrange numbers less than 3 can be arranged as a set {lp/q : p/q ∈ ℚ ∩ [0, 1]} using the Farey index. The present paper considers a function C(α) devised from Sturmian words. We demonstrate that the function C(α) contains all information on Lagrange numbers less than 3. More precisely, we prove that for any real number α ∈ (0, 1], the value C(α) - C(0) is equal to the sum of all numbers 3 - lp/q where the Farey index p/q is less than α.
Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆ℍn + V be the Schrödinger operator on ℍn, where ∆ℍn is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆ℍn + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).
In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.
q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.
Bae, Jun-Young;Han, Kyung-Min;Lee, Jun-Ho;Kim, Sang-Eun;Lee, Jeong-Yeol;Bai, Sung-Chul C.
Journal of Aquaculture
/
v.21
no.1
/
pp.26-33
/
2008
This study investigated the synergistic effects of dietary supplementation of quartz porphyry(QP) and a laboratory developed feed stimulants, BAISM(BS) on growth performance and utilization as the additives for juvenile eel Anguilla japonica. Six isoenergetic experimental diets(18.2 kJ/g) were formulated to contain 50% crude protein, 15% lipid with or without dietary QP(Song-Gang stone, Davistone, Korea) and BS supplementation. QP and BS were provided at 0% in the control diet($Q_0B_0$) and at 0.7% QP+0% BS($Q_{0.7}B_0$), 0.7% QP+0.3% BS($Q_{0.7}B_{0.3}$), 0.7% QP+0.5% BS($Q_{0.7}B_{0.5}$), 0.7% QP+0.75% BS($Q_{0.7}B_{0.75}$) and 0.7% QP+1.0% BS($Q_{0.7}B_{1.0}$) in experimental diets on dry matter basis. After four weeks of adaptation, triplicate groups of 30 fish initially averaging $15{\pm}0.1g(mean{\pm}SD)$ were randomly distributed into each aquarium, and they were fed one of the experimental diets for 8 weeks. By the end of the feeding trial, weight gain(%), specific growth rate(%), feed efficiency(%) and protein efficiency ratio of fish fed diet $Q_{0.7}B_{0.5},\;Q_{0.7}B_{0.75}\;and\;Q_{0.7}B_{1.0}$, were significantly higher(P<0.05) than those of fish fed the other diets. But, $Q_{0.7}B_{0.5},\;Q_{0.7}B_{0.75}\;and\;Q_{0.7}B_{1.0}$ were no significant differences(P<0.05). In challenge test, fish were infected by intraperitoneal injection of 0.1 mL bacterial suspension with Edwardsiella tarda per fish after the feeding trial. As a result, fish fed QP and BS supplemented diets have a significantly higher cumulative survival rate than those of fish fed control diet(P<0.05). In conclusion, these results indicated that the optimum dietary supplementation level of QP and BS could be approximately 0.7% quartz porphyry+0.5% BAISM($Q_{0.7}B_{0.5}$) of diet based on WG, FER, SGR, PER, cumulative survival rate in juvenile eel A. japonica.
In this paper, the fractional Hardy-type operator of variable order ${\beta}(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}^{{\alpha},{\lambda}}_{p_1,q_1({\cdot})}(\mathbb{R}^n)$ with variable exponent $q_1(x)$ into the weighted space $M\dot{K}^{{\alpha},{\lambda}}_{p_2,q_2({\cdot})}(\mathbb{R}^n,{\omega})$, where ${\omega}=(1+|x|)^{-{\gamma}(x)}$ with some ${\gamma}(x)$ > 0 and $1/q_1(x)-1/q_2(x)={\beta}(x)/n$ when $q_1(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_1(x)$ satisfies the logarithmic continuity condition both locally and at infinity that 1 < $q_1({\infty}){\leq}q_1(x){\leq}(q_1)+$ < ${\infty}(x{\in}\mathbb{R}^n)$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.