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ON THE EXISTENCE OF p-ADIC ROOTS

YouNGg-HEE KiM* AND JONGSUNG CHOT**

ABSTRACT. In this paper, we give the condition for the existence
of the g-th roots of p-adic numbers in Q, with an integer ¢ > 2 and
(p,q) = 1. We have the conditions for the existence of the fifth root
and the seventh root of p-adic numbers in Q,, respectively.

1. Introduction

Let p be a prime and Q, be the field of p-adic numbers. The p-adic
numbers were introduced by Hensel([2]). The theory of the field of p-adic
numbers has been related to several areas of mathematics and physics,
and so the research of this field has been very important([3]).

Computing the ¢g-th roots of a p-adic number is useful in the field of
computer science and cryptography, specially when ¢ is a prime. It is
necessary to confirm the existence of the g-th root of a p-adic number
in Q, before computing them([4], [5]). There are some results of the
existence of square roots of p-adic numbers and the g-th roots of unity([1-
2]). In [4], the authors gave the conditions for the existence of the cubic
root of a p-adic number, and then applied the secant method to compute
the cubic root.

In this paper, we give the condition for the existence of the g-th roots
of p-adic numbers in Q, with an integer ¢ > 2 and (p,q) = 1. We have
the conditions for the fifth root and the seventh root of p-adic numbers,
respectively, including the case p = q.
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2. Preliminaries

The following definitions and theorems are necessary for our discus-
sion. See [1] and [2] for details.

Let p € N be a prime number and x € Q with x # 0. The p-adic
order of x, ordyx, is defined by

ordoa — the highest power of p which divides x, if x € Z,
P71 ordpa — ordpb, ifex=7%, a,beZ,b#0.

The p-adic norm | - |, : Q — RT of z is defined by
| | B pfordpar7 if = 7& 0,
Tl = 0, ifz=0.

The field of p-adic numbers Q) is the completion of Q with respect
to the p-adic norm | - |,. The elements of Q, are equivalence classes of
Cauchy sequences in Q with respect to the extension of the p-adic norm

defined by
aly = Tim Jal,.
where {a,} is a Cauchy sequence in Q representing a € Q.
THEOREM 2.1. Every equivalence class a in Q, satisfying |a|, < 1
has exactly one representative Cauchy sequence {a;} such that
(1) a; €7Z,0 < q; <pi fori=1,2,...,
(2) a; = a;y1 (mod p') fori =1,2,....

Hence every p-adic number a € Q, has a unique representation

00
n
a = § anp -,

n=-—-m

where a_,, # 0 and a, € {0,1,2,...,p — 1} for n > —m, and represent

the given p-adic number a as a fraction in the base p as follows:
a=...0p...020100.4—7 ...0—ym,

which is called the canonical p-adic expansion of a.
Let Z;, be the set of p-adic integers and Z, be the set of p-adic units.
It follows that Z, = {a € Q| |al, < 1} and Z; = {a € Q| |a|, = 1}.
From this, the next theorem follows.

THEOREM 2.2. Let a be a p-adic number of norm p~™. Then a = p™u
for some u € Z, .
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3. p-Adic roots

Let g be an integer such that ¢ > 2. A p-adic number z € Q, is said
to be a g-th root of a € Q, of order k € N if and only if 29 = a (mod
p¥). Specially, the g-th root of a € Qp is called the fifth root of a when
q = 5, and the seventh root of @ when ¢ = 7.

In this section, we provide the condition for the existence of the ¢-
th root of p-adic numbers a in Q, when (p,q) = 1. We also have the
conditions for the existence of the fifth root and the seventh root of
p-adic numbers, respectively.

The following lemma is essential for our discussion([1]).

LEMMA 3.1. Let a,b € Q,. Then a and b are congruent modulo Pk
and write a = b (mod p*) if and only if |a — b, < 1/pF.

The next theorem is the basis for existing p-adic roots([2]).

THEOREM 3.2. (Hensel’s lemma) Let F(x) = co + ciz + - -+ + cpa”
be a polynomial whose coefficients are p-adic integers. Let F'(x) =
c1 + cox + 3cgx? + -+ + ne,a™ be the derivative of F(z). Let ag be a
p-adic integer such that F(ap) = 0 (mod p) and F'(ag) # 0 (mod p).
Then there exists a unique p-adic integer a such that

F(a)=0 and a=ag (mod p).

The following theorem follows from Theorem 3.2, and provides the
condition between p-adic numbers and congruence([1]).

THEOREM 3.3. A polynomial with integer coefficients has a root in
Z,, if and only if it has an integer root modulo pF for any k > 1.

Some results of the existence of square roots of p-adic numbers are
obtained from Theorem 3.3([1]). In [4], the authors gave the condition
for the existence of cubic roots in Q,. We generalize the result to the
g-th root, and we have the condition for the existence of a g-th root of
p-adic numbers in Q, when ¢ > 2 and (p,¢) = 1.

THEOREM 3.4. Let (p,q) = 1. Then a rational integer a not divisible
by p has a g-th root in Z, (p # q) if and only if a is a g-th residue
modulo p.

Proof. Consider the p-adic continuous function f(x) = 2% —a and its
derivative f'(x) = qz?~!. If a is not a g-th residue modulo p, then it has
no ¢-th roots in Z, by Theorem 3.3.
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Conversely, if a is a g-th residue modulo p, then a = af (mod p) for
ap € {1,2,...,p—1}. Hence f(ag) =0 (mod p) and f'(ag) = qag_1 Z£0
(mod p), because p # ¢ and ag # 0. From Hensel’s lemma, the solution
is in Zj, and so a has a g-th root in Z,. O

From Theorem 3.4, we have the conditions for the existence of the
fifth root of a p-adic number in Q) including p = gq.

THEOREM 3.5. Let p be a prime number. Then we have:

(1) If p # 5, then a = p°"dr%y € Qp for some u € Z, has a fifth root
in Q, if and only if ordya = 5m for m € Z and u = v°> for some
unit v € Z, .

(2) If p =5, then a = 5°%%, € Q5 for some u € ZZ has a fifth root
in Qs if and only if ordsa = 5m for m € Z and v =1 (mod 25) or
u =k (mod 5) for some k (2 <k <4).

Proof. Let a and z in Q,. Then a = p%%y and z = p°*4%y for some
u,v € Z, such that
u=ag+ap+ayp® +--, v=maxg+x1p+T2p* + - (3.1)
with ap # 0 and ¢ # 0. Then we have

l‘5 —qge p50rdpzv5 — pordpau

(3.2)
< p50rdpx(:z’o +xp+--- )5 = pordpa(ao +aip+---).
The equation (3.2) is equivalent to the following system:

Sord,r = ord,a
v =u (3.3)

5 —ap=0 (mod p).

Let f(z) = 2% — ag. Then its derivative f'(x) = 5% satisfies
/! _ _ 17 lfp 7& 57

(1) If p # 5, then the solution of f(zg) = x) — ag exists by Hensel’s
lemma. Thus the result follows.

= 9, then the equation (3.3) i1s reduced to the following system:
(2) If p=5, th he equation (3.3) is reduced he following sy

{ (xo—|—5x1—|—52:172+---)5:a0+5a1+52a2+~-

3 —ap=0 (mod 5), (3.4)

where xg, a9 € {1,2,3,4}. Thus (3.4) gives
(900+5x1+52x2+---)5:x0+5a1—|—52a2+--- (3.5)
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with 29 = 1,2,3,4. From (3.5), we have the followings.
(i) If 29 = 1, then

w=1+5a; 4 5%ay 4 --- = (14 5z + 52xp +---)°
=1+5%1 +5%(2? +23) +--- =1 (mod 25).
In the similar manner, we have the results in the other cases.
(ii) If 2p = 2, then u =2+ 5-14+5%(1 + x1) +--- = 2 (mod 5).
(iii) If 2o =3, then u =3 +5-3 +5%(4 +21) +--- = 3 (mod 5).
(iv) If 2o = 4, then u =4+ 5 -4 + 5%(x1 + 322) + - -- =4 (mod 5).
Hence the proof is completed. O

We also have the condition for the existence of the seventh root of a
p-adic number in Z,.

THEOREM 3.6. Let p be a prime number. Then we have:

(1) If p # 7, then a = p°¥%y ¢ Qp for some u € Z, has a seventh
root in Q, if and only if ord,a = Tm for m € 7Z and u = v” for
some unit v € Z, .

(2) If p = 7, then a = 7Y%, € Q; for some u € Z7 has a seventh
root in Q7 if and only if ordya = Tm for m € Z and v = 1 (mod
49) or u = k (mod 7) for some k (2 < k < 6).

Proof. Let a,z € Q, be a = p2dpq, and z = p'dr®y, where u, v € Ly
as same as in (3.1). Then we have

(137 —qge p70rdp:1:,u7 _ pordpau (3 6)
<:>p7ordpx(x0+$1p+.“)7:pordpa(ao_'_alp_’_“.). .
The equation (3.6) is equivalent to the following system:
Tord,x = ordya
v = (3.7)

5 —ap=0 (mod p).

Let f(z) = 2" — ap. Then its derivative f'(x) = 72 satisfies
/ o . 1, if P 75 7,

(1) If p # 7, then the solution of f(x¢) = xf, — ag exists by Hensel’s
lemma. Thus the result follows.
(2) If p =7, then the equation (3.7) is reduced to the following system:

{ (xo—|—7x1—1—72:172+---)7:a0+7a1+72a2+~-

vy —ap=0 (mod 7), (3.8)



200 Young-Hee Kim and Jongsung Choi

where xg,a9 € {1,2,3,4,5,6}. Thus (3.8) gives

(w0+7x1+72x2+---)7:xo—|—7a1—|—72a2+--- (3.9)
with g = 1,2,3,4,5,6. From (3.9), we have the followings.
(i) If g =1, then u =1+ 7%y + 73(323 + 23) + --- = 1 (mod 49).
(i) f xp =2, then u =2+ 7-4+ 7(2+ 1) +--- =2 (mod 7).
(iii) f 2o =3, then u =3+ 7-4+7*(2+21) +--- =3 (mod 7).
(iv) If 2o =4, then u =4+ 7-2+ 7*(5+x1) +--- =4 (mod 7).
(v) Ifxg =5, then u=5+7-2+ 7*(5+3z1) +--- =5 (mod 7).
(vi) If 29 = 6, then u =6+ 76+ 7221 + - = 6 (mod 7).
Hence the proof is completed. O
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