ON THE EXISTENCE OF p-ADIC ROOTS

Young-Hee Kim* and Jongsung Chor**

Abstract

In this paper, we give the condition for the existence of the q-th roots of p-adic numbers in \mathbb{Q}_{p} with an integer $q \geq 2$ and $(p, q)=1$. We have the conditions for the existence of the fifth root and the seventh root of p-adic numbers in \mathbb{Q}_{p}, respectively.

1. Introduction

Let p be a prime and \mathbb{Q}_{p} be the field of p-adic numbers. The p-adic numbers were introduced by Hensel([2]). The theory of the field of p-adic numbers has been related to several areas of mathematics and physics, and so the research of this field has been very important([3]).

Computing the q-th roots of a p-adic number is useful in the field of computer science and cryptography, specially when q is a prime. It is necessary to confirm the existence of the q-th root of a p-adic number in \mathbb{Q}_{p} before computing them $([4],[5])$. There are some results of the existence of square roots of p-adic numbers and the q-th roots of unity ([1$2]$). In [4], the authors gave the conditions for the existence of the cubic root of a p-adic number, and then applied the secant method to compute the cubic root.

In this paper, we give the condition for the existence of the q-th roots of p-adic numbers in \mathbb{Q}_{p} with an integer $q \geq 2$ and $(p, q)=1$. We have the conditions for the fifth root and the seventh root of p-adic numbers, respectively, including the case $p=q$.

[^0]
2. Preliminaries

The following definitions and theorems are necessary for our discussion. See [1] and [2] for details.

Let $p \in \mathbb{N}$ be a prime number and $x \in \mathbb{Q}$ with $x \neq 0$. The p-adic order of $x, \operatorname{ord}_{p} x$, is defined by

$$
\operatorname{ord}_{p} x=\left\{\begin{array}{l}
\text { the highest power of } p \text { which divides } x, \quad \text { if } x \in \mathbb{Z} \\
\operatorname{ord}_{p} a-\operatorname{ord}_{p} b, \\
\text { if } x=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0
\end{array}\right.
$$

The p-adic norm $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}^{+}$of x is defined by

$$
|x|_{p}=\left\{\begin{array}{cl}
p^{-\operatorname{ord}_{p} x}, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

The field of p-adic numbers \mathbb{Q}_{p} is the completion of \mathbb{Q} with respect to the p-adic norm $|\cdot|_{p}$. The elements of \mathbb{Q}_{p} are equivalence classes of Cauchy sequences in \mathbb{Q} with respect to the extension of the p-adic norm defined by

$$
|a|_{p}=\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}
$$

where $\left\{a_{n}\right\}$ is a Cauchy sequence in \mathbb{Q} representing $a \in \mathbb{Q}_{p}$.
Theorem 2.1. Every equivalence class a in \mathbb{Q}_{p} satisfying $|a|_{p} \leq 1$ has exactly one representative Cauchy sequence $\left\{a_{i}\right\}$ such that
(1) $a_{i} \in \mathbb{Z}, 0 \leq a_{i}<p^{i}$ for $i=1,2, \ldots$,
(2) $a_{i} \equiv a_{i+1}\left(\bmod p^{i}\right)$ for $i=1,2, \ldots$

Hence every p-adic number $a \in \mathbb{Q}_{p}$ has a unique representation

$$
a=\sum_{n=-m}^{\infty} a_{n} p^{n}
$$

where $a_{-m} \neq 0$ and $a_{n} \in\{0,1,2, \ldots, p-1\}$ for $n \geq-m$, and represent the given p-adic number a as a fraction in the base p as follows:

$$
a=\ldots a_{n} \ldots a_{2} a_{1} a_{0} \cdot a_{-1} \ldots a_{-m}
$$

which is called the canonical p-adic expansion of a.
Let \mathbb{Z}_{p} be the set of p-adic integers and \mathbb{Z}_{p}^{\times}be the set of p-adic units. It follows that $\mathbb{Z}_{p}=\left\{\left.a \in \mathbb{Q}_{p}| | a\right|_{p} \leq 1\right\}$ and $\mathbb{Z}_{p}^{\times}=\left\{\left.a \in \mathbb{Q}_{p}| | a\right|_{p}=1\right\}$.

From this, the next theorem follows.
Theorem 2.2. Let a be a p-adic number of norm p^{-n}. Then $a=p^{n} u$ for some $u \in \mathbb{Z}_{p}^{\times}$.

3. p-Adic roots

Let q be an integer such that $q \geq 2$. A p-adic number $x \in \mathbb{Q}_{p}$ is said to be a q-th root of $a \in \mathbb{Q}_{p}$ of order $k \in \mathbb{N}$ if and only if $x^{q} \equiv a(\bmod$ $\left.p^{k}\right)$. Specially, the q-th root of $a \in \mathbb{Q}_{p}$ is called the fifth root of a when $q=5$, and the seventh root of a when $q=7$.

In this section, we provide the condition for the existence of the q th root of p-adic numbers a in \mathbb{Q}_{p} when $(p, q)=1$. We also have the conditions for the existence of the fifth root and the seventh root of p-adic numbers, respectively.

The following lemma is essential for our discussion([1]).
Lemma 3.1. Let $a, b \in \mathbb{Q}_{p}$. Then a and b are congruent modulo p^{k} and write $a \equiv b\left(\bmod p^{k}\right)$ if and only if $|a-b|_{p} \leq 1 / p^{k}$.

The next theorem is the basis for existing p-adic roots $([2])$.
Theorem 3.2. (Hensel's lemma) Let $F(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ be a polynomial whose coefficients are p-adic integers. Let $F^{\prime}(x)=$ $c_{1}+c_{2} x+3 c_{3} x^{2}+\cdots+n c_{n} x^{n}$ be the derivative of $F(x)$. Let a_{0} be a p-adic integer such that $F\left(a_{0}\right) \equiv 0(\bmod p)$ and $F^{\prime}\left(a_{0}\right) \not \equiv 0(\bmod p)$. Then there exists a unique p-adic integer a such that

$$
F(a)=0 \quad \text { and } \quad a \equiv a_{0}(\bmod p)
$$

The following theorem follows from Theorem 3.2, and provides the condition between p-adic numbers and congruence([1]).

Theorem 3.3. A polynomial with integer coefficients has a root in \mathbb{Z}_{p} if and only if it has an integer root modulo p^{k} for any $k \geq 1$.

Some results of the existence of square roots of p-adic numbers are obtained from Theorem $3.3([1])$. In [4], the authors gave the condition for the existence of cubic roots in \mathbb{Q}_{p}. We generalize the result to the q-th root, and we have the condition for the existence of a q-th root of p-adic numbers in \mathbb{Q}_{p} when $q \geq 2$ and $(p, q)=1$.

Theorem 3.4. Let $(p, q)=1$. Then a rational integer a not divisible by p has a q-th root in $\mathbb{Z}_{p}(p \neq q)$ if and only if a is a q-th residue modulo p.

Proof. Consider the p-adic continuous function $f(x)=x^{q}-a$ and its derivative $f^{\prime}(x)=q x^{q-1}$. If a is not a q-th residue modulo p, then it has no q-th roots in \mathbb{Z}_{p} by Theorem 3.3.

Conversely, if a is a q-th residue modulo p, then $a \equiv a_{0}^{q}(\bmod p)$ for $a_{0} \in\{1,2, \ldots, p-1\}$. Hence $f\left(a_{0}\right) \equiv 0(\bmod p)$ and $f^{\prime}\left(a_{0}\right)=q a_{0}^{q-1} \not \equiv 0$ $(\bmod p)$, because $p \neq q$ and $a_{0} \neq 0$. From Hensel's lemma, the solution is in \mathbb{Z}_{p}, and so a has a q-th root in \mathbb{Z}_{p}.

From Theorem 3.4, we have the conditions for the existence of the fifth root of a p-adic number in \mathbb{Q}_{p} including $p=q$.

Theorem 3.5. Let p be a prime number. Then we have:
(1) If $p \neq 5$, then $a=p^{\operatorname{ord}_{p} a} u \in \mathbb{Q}_{p}$ for some $u \in \mathbb{Z}_{p}^{\times}$has a fifth root in \mathbb{Q}_{p} if and only if $\operatorname{ord}_{p} a=5 m$ for $m \in \mathbb{Z}$ and $u=v^{5}$ for some unit $v \in \mathbb{Z}_{p}^{\times}$.
(2) If $p=5$, then $a=5^{\operatorname{ord}_{5} a} u \in \mathbb{Q}_{5}$ for some $u \in \mathbb{Z}_{5}^{\times}$has a fifth root in \mathbb{Q}_{5} if and only if $\operatorname{ord}_{5} a=5 m$ for $m \in \mathbb{Z}$ and $u \equiv 1(\bmod 25)$ or $u \equiv k(\bmod 5)$ for some $k(2 \leq k \leq 4)$.
Proof. Let a and x in \mathbb{Q}_{p}. Then $a=p^{\operatorname{ord}_{p} a} u$ and $x=p^{\operatorname{ord}_{p} x} v$ for some $u, v \in \mathbb{Z}_{p}^{\times}$such that

$$
\begin{equation*}
u=a_{0}+a_{1} p+a_{2} p^{2}+\cdots, v=x_{0}+x_{1} p+x_{2} p^{2}+\cdots \tag{3.1}
\end{equation*}
$$

with $a_{0} \neq 0$ and $x_{0} \neq 0$. Then we have

$$
\begin{align*}
x^{5}=a & \Leftrightarrow p^{5 \operatorname{ord}_{p} x} v^{5}=p^{\operatorname{ord}_{p} a} u \\
& \Leftrightarrow p^{5 \operatorname{ord}_{p} x}\left(x_{0}+x_{1} p+\cdots\right)^{5}=p^{\operatorname{ord}_{p} a}\left(a_{0}+a_{1} p+\cdots\right) . \tag{3.2}
\end{align*}
$$

The equation (3.2) is equivalent to the following system:

$$
\left\{\begin{array}{l}
5 \operatorname{ord}_{p} x=\operatorname{ord}_{p} a \tag{3.3}\\
v^{5}=u \\
x_{0}^{5}-a_{0} \equiv 0 \quad(\bmod p) .
\end{array}\right.
$$

Let $f(x)=x^{5}-a_{0}$. Then its derivative $f^{\prime}(x)=5 x^{4}$ satisfies

$$
\left|f^{\prime}\left(x_{0}\right)\right|_{p}=|5|_{p}= \begin{cases}1, & \text { if } p \neq 5 \\ \frac{1}{5}, & \text { if } p=5\end{cases}
$$

(1) If $p \neq 5$, then the solution of $f\left(x_{0}\right)=x_{0}^{5}-a_{0}$ exists by Hensel's lemma. Thus the result follows.
(2) If $p=5$, then the equation (3.3) is reduced to the following system:

$$
\left\{\begin{array}{c}
\left(x_{0}+5 x_{1}+5^{2} x_{2}+\cdots\right)^{5}=a_{0}+5 a_{1}+5^{2} a_{2}+\cdots \tag{3.4}\\
x_{0}^{5}-a_{0} \equiv 0 \quad(\bmod 5),
\end{array}\right.
$$

where $x_{0}, a_{0} \in\{1,2,3,4\}$. Thus (3.4) gives

$$
\begin{equation*}
\left(x_{0}+5 x_{1}+5^{2} x_{2}+\cdots\right)^{5}=x_{0}+5 a_{1}+5^{2} a_{2}+\cdots \tag{3.5}
\end{equation*}
$$

with $x_{0}=1,2,3,4$. From (3.5), we have the followings.
(i) If $x_{0}=1$, then

$$
\begin{aligned}
u & =1+5 a_{1}+5^{2} a_{2}+\cdots=\left(1+5 x_{1}+5^{2} x_{2}+\cdots\right)^{5} \\
& =1+5^{2} x_{1}+5^{3}\left(x_{1}^{2}+x_{2}^{2}\right)+\cdots \equiv 1(\bmod 25) .
\end{aligned}
$$

In the similar manner, we have the results in the other cases.
(ii) If $x_{0}=2$, then $u=2+5 \cdot 1+5^{2}\left(1+x_{1}\right)+\cdots \equiv 2(\bmod 5)$.
(iii) If $x_{0}=3$, then $u=3+5 \cdot 3+5^{2}\left(4+x_{1}\right)+\cdots \equiv 3(\bmod 5)$.
(iv) If $x_{0}=4$, then $u=4+5 \cdot 4+5^{2}\left(x_{1}+3 x_{2}^{2}\right)+\cdots \equiv 4(\bmod 5)$.

Hence the proof is completed.
We also have the condition for the existence of the seventh root of a p-adic number in \mathbb{Z}_{p}.

Theorem 3.6. Let p be a prime number. Then we have:
(1) If $p \neq 7$, then $a=p^{\operatorname{ord}_{p} a} u \in \mathbb{Q}_{p}$ for some $u \in \mathbb{Z}_{p}^{\times}$has a seventh root in \mathbb{Q}_{p} if and only if $\operatorname{ord}_{p} a=7 m$ for $m \in \mathbb{Z}$ and $u=v^{7}$ for some unit $v \in \mathbb{Z}_{p}^{\times}$.
(2) If $p=7$, then $a=7^{\text {ord }_{7} a} u \in \mathbb{Q}_{7}$ for some $u \in \mathbb{Z}_{7}^{\times}$has a seventh root in \mathbb{Q}_{7} if and only if $\operatorname{ord}_{7} a=7 m$ for $m \in \mathbb{Z}$ and $u \equiv 1(\bmod$ 49) or $u \equiv k(\bmod 7)$ for some $k(2 \leq k \leq 6)$.

Proof. Let $a, x \in \mathbb{Q}_{p}$ be $a=p^{\operatorname{ord}_{p} a} u$ and $x=p^{\operatorname{ord}_{p} x} v$, where $u, v \in \mathbb{Z}_{p}^{\times}$ as same as in (3.1). Then we have

$$
\begin{align*}
x^{7}=a & \Leftrightarrow p^{7 \operatorname{ord}_{p} x} v^{7}=p^{\operatorname{ord}_{p} a} u \\
& \Leftrightarrow p^{7 \operatorname{ord}_{p} x}\left(x_{0}+x_{1} p+\cdots\right)^{7}=p^{\operatorname{ord}_{p} a}\left(a_{0}+a_{1} p+\cdots\right) . \tag{3.6}
\end{align*}
$$

The equation (3.6) is equivalent to the following system:

$$
\left\{\begin{array}{l}
7 \operatorname{ord}_{p} x=\operatorname{ord}_{p} a \tag{3.7}\\
v^{7}=u \\
x_{0}^{7}-a_{0} \equiv 0 \quad(\bmod p)
\end{array}\right.
$$

Let $f(x)=x^{7}-a_{0}$. Then its derivative $f^{\prime}(x)=7 x^{6}$ satisfies

$$
\left|f^{\prime}\left(x_{0}\right)\right|_{p}=|7|_{p}= \begin{cases}1, & \text { if } p \neq 7, \\ \frac{1}{7}, & \text { if } p=7 .\end{cases}
$$

(1) If $p \neq 7$, then the solution of $f\left(x_{0}\right)=x_{0}^{7}-a_{0}$ exists by Hensel's lemma. Thus the result follows.
(2) If $p=7$, then the equation (3.7) is reduced to the following system:

$$
\left\{\begin{array}{c}
\left(x_{0}+7 x_{1}+7^{2} x_{2}+\cdots\right)^{7}=a_{0}+7 a_{1}+7^{2} a_{2}+\cdots \tag{3.8}\\
x_{0}^{7}-a_{0} \equiv 0 \quad(\bmod 7),
\end{array}\right.
$$

where $x_{0}, a_{0} \in\{1,2,3,4,5,6\}$. Thus (3.8) gives

$$
\begin{equation*}
\left(x_{0}+7 x_{1}+7^{2} x_{2}+\cdots\right)^{7}=x_{0}+7 a_{1}+7^{2} a_{2}+\cdots \tag{3.9}
\end{equation*}
$$

with $x_{0}=1,2,3,4,5,6$. From (3.9), we have the followings.
(i) If $x_{0}=1$, then $u=1+7^{2} x_{1}+7^{3}\left(3 x_{1}^{2}+x_{2}^{2}\right)+\cdots \equiv 1(\bmod 49)$.
(ii) If $x_{0}=2$, then $u=2+7 \cdot 4+7^{2}\left(2+x_{1}\right)+\cdots \equiv 2(\bmod 7)$.
(iii) If $x_{0}=3$, then $u=3+7 \cdot 4+7^{2}\left(2+x_{1}\right)+\cdots \equiv 3(\bmod 7)$.
(iv) If $x_{0}=4$, then $u=4+7 \cdot 2+7^{2}\left(5+x_{1}\right)+\cdots \equiv 4(\bmod 7)$.
(v) If $x_{0}=5$, then $u=5+7 \cdot 2+7^{2}\left(5+3 x_{1}\right)+\cdots \equiv 5(\bmod 7)$.
(vi) If $x_{0}=6$, then $u=6+7 \cdot 6+7^{2} x_{1}+\cdots \equiv 6(\bmod 7)$.

Hence the proof is completed.

References

[1] S. Katok, p-Adic analysis compared with real, American Math. Soc., 2007
[2] N. Koblitz, p-Adic numbers, p-adic analysis and zeta functions(2nd ed.), Springer-Verlag, 1984.
[3] V. S. Vladimirov, I. V. Volvich, and E. I. Zelenov, p-Adic analysis and mathematical physics, Norld Scientific, 1994.
[4] T. Zerzaihi and M. Kecies, Computation of the cubic root of a p-adic number, J. Math. Research 3 (2011), no. 3, 40-47.
[5] T. Zerzaihi, M. Kecies, and M. Knapp, Hensel codes of square roots of p-adic numbers, Appl. Anal. Discrete Math. 4 (2010), 32-44.
*
Division of General Education-Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea
E-mail: yhkim@kw.ac.kr
**
Division of General Education-Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea
E-mail: jeschoi@kw.ac.kr

[^0]: Received September 03, 2014; Accepted January 19, 2015.
 2010 Mathematics Subject Classification: Primary 11E95, Secondary 26E30.
 Key words and phrases: p-adic roots.
 Correspondence should be addressed to Jongsung Choi, jeschoi@kw.ac.kr.
 The present research has been conducted by the Research Grant of Kwangwoon University in 2014.

