DOI QR코드

DOI QR Code

A FUNCTION CONTAINING ALL LAGRANGE NUMBERS LESS THAN THREE

  • DoYong Kwon (Department of Mathematics, Chonnam National University)
  • Received : 2023.02.08
  • Accepted : 2023.04.24
  • Published : 2023.09.14

Abstract

Given a real number α, the Lagrange number of α is the supremum of all real numbers L > 0 for which the inequality |α - p/q| < (Lq2)-1 holds for infinitely many rational numbers p/q. All Lagrange numbers less than 3 can be arranged as a set {lp/q : p/q ∈ ℚ ∩ [0, 1]} using the Farey index. The present paper considers a function C(α) devised from Sturmian words. We demonstrate that the function C(α) contains all information on Lagrange numbers less than 3. More precisely, we prove that for any real number α ∈ (0, 1], the value C(α) - C(0) is equal to the sum of all numbers 3 - lp/q where the Farey index p/q is less than α.

Keywords

Acknowledgement

The comments by anonymous referees, which made the paper readable, are gratefully acknowledged. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B02010219).

References

  1. J.-P. Allouche, J. L. Davison, M. Queffelec, and L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), no. 1, 39-66.  https://doi.org/10.1006/jnth.2001.2669
  2. M. Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings, Springer, Cham, 2013. 
  3. J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola, Combinatorics on words. Christoffel words and repetitions in words, CRM Monograph Series, 27. American Mathematical Society, 2009. 
  4. G. F. Frobenius, Uber die Markoffschen Zahlen, Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften (1913), 458-487. 
  5. J. Gaster, Boundary slopes for the Markov ordering on relatively prime pairs, Adv. Math. 403 (2022), Paper No. 108377. 
  6. J. Gaster and B. Loustau, The sum of Lagrange numbers, Proc. Amer. Math. Soc. 149 (2021), no. 12, 5385-5391.  https://doi.org/10.1090/proc/15527
  7. A. Ya. Khinchin, Continued fractions, The University of Chicago Press, 1964. 
  8. D. Y. Kwon, A singular function from Sturmian continued fractions, J. Korean Math. Soc. 56 (2019), no. 4, 1049-1061. 
  9. D. Y. Kwon, Moments of discrete measures with dense jumps induced by β-expansions, J. Math. Anal. Appl. 399 (2013), no. 1, 1-11.  https://doi.org/10.1016/j.jmaa.2012.07.014
  10. D. Y. Kwon, The fractional totient function and Sturmian Dirichlet series, Honam Math. J. 39 (2017), no. 2, 297-305; Corrigendum is available at http://amath.jnu.ac.kr/doyong/paper/Lemma3.3-corrigendum.pdf 
  11. C. Lagisquet, E. Pelantova, S. Tavenas, and L. Vuillon, On the Markov numbers: fixed numerator, denominator, and sum conjectures, Adv. in Appl. Math. 130 (2021), Paper No. 102227. 
  12. K. Lee, L. Li, M. Rabideau, and R. Schiffler, On the ordering of the Markov numbers, Adv. in Appl. Math. 143 (2023), Paper No. 102453. 
  13. M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, 2002. 
  14. A. Markoff, Sur les formes quadratiques binaires indefinies, Math. Ann. 15 (1879), 381-406.  https://doi.org/10.1007/BF02086269
  15. A. Markoff, Sur les formes quadratiques binaires indefinies II, Math. Ann. 17 (1880), 379-399.  https://doi.org/10.1007/BF01446234
  16. M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42.  https://doi.org/10.2307/2371431
  17. C. Reutenauer, From Christoffel words to Markoff numbers, Oxford University Press, Oxford, 2019.