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BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE

OPERATOR ON HERZ-MORREY SPACES WITH

VARIABLE EXPONENT

Jianglong Wu

Abstract. In this paper, the fractional Hardy-type operator of vari-
able order β(x) is shown to be bounded from the Herz-Morrey spaces

MK̇α,λ

p
1
,q

1
(·)

(Rn) with variable exponent q1(x) into the weighted space

MK̇α,λ

p2 ,q2 (·)
(Rn, ω), where ω = (1 + |x|)−γ(x) with some γ(x) > 0 and

1/q1(x) − 1/q2 (x) = β(x)/n when q1(x) is not necessarily constant at
infinity. It is assumed that the exponent q1(x) satisfies the logarith-
mic continuity condition both locally and at infinity that 1 < q1(∞) ≤
q1(x) ≤ (q1)+ < ∞ (x ∈ R

n).

1. Introduction

Let f be a locally integrable function on R
n. The n-dimensional Hardy

operator is defined by

H (f)(x) :=
1

|x|n

∫

|t|<|x|

f(t)dt, x ∈ R
n \ {0}.

In 1995, Christ and Grafakos [2] obtained the result for the boundedness
of H on Lp(Rn) (1 < p < ∞) spaces, and they also found the exact opera-
tor norms of H on this space. In 2007, Fu et al. [3] gave the central BMO
estimates for commutators of n-dimensional fractional and Hardy operators.
And recently, author [4, 5, 6, 7, 8, 9] also considers the boundedness for Hardy
operator and its commutator in (variable exponent) Herz-Morrey spaces.

The theory of variable exponent Lebesgue spaces is started by Orlicz (see
[10], 1931) and Nakano (see [11, 12], 1950 and 1951). In particular, the defini-
tion of Musielak-Orlicz spaces is clearly stated in [11]. However, the variable
exponent function space, due to the failure of translation invariance and related
properties, is very difficult to analyze.
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Nowadays there is an evident increase of investigations related to both the
theory of the spaces Lq(·)(Ω) themselves and the operator theory in these
spaces. This is caused by possible applications to models with non-standard
local growth (in elasticity theory, fluid mechanics, differential equations, see
for example [13], [14] and references therein) and is based on recent break-
through result on boundedness of the Hardy-Littlewood maximal operator in
these spaces. By virtue of the fine works [15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28],
some important conditions on variable exponent, for example, the log-Hölder
conditions and the Muckenhoupt type condition, have been obtained.

Now, we define the n-dimensional fractional Hardy-type operators of variable
order β(x) as follows.

Definition 1.1. Let f be a locally integrable function on R
n, 0 ≤ β(x) < n.

The n-dimensional fractional Hardy-type operators of variable order β(x) are
defined by

Hβ(·)(f)(x) :=
1

|x|n−β(x)

∫

|t|<|x|

f(t)dt,(1.0a)

H
∗
β(·)(f)(x) :=

∫

|t|≥|x|

f(t)

|t|n−β(x)
dt,(1.0b)

where x ∈ R
n \ {0}.

Obviously, when β(x) = 0, Hβ(·) is just H , and denote by H ∗ := H ∗
β(·) =

H ∗
0 . And when β(x) is constant, Hβ(·) and H ∗

β(·) will become Hβ and H ∗
β

[3], respectively.
The Riesz-type potential operator of variable order β(x) is defined by

(1.1) Iβ(·)(f)(x) =

∫

Rn

f(y)

|x− y|n−β(x)
dy, 0 < β(x) < n.

The boundedness of the operator Iβ(·) from the space Lp(·)(Rn) with the vari-

able exponent p(x) into the space Lq(·)(Rn) with the limiting Sobolev exponent

1

q(x)
=

1

p(x)
−

β(x)

n

was an open problem for a long time. It was solved in the case of bounded
domains. First, in [29], in the case of bounded domains Ω, there was proved a
conditional result: the Sobolev theorem is valid for the potential operator Iβ(·)
within the framework of the spaces Lp(·)(Ω) with the variable exponent p(x)
satisfying the logarithmic Dini condition, if the maximal operator is bounded
in the space Lp(·)(Ω). In 2004, Diening [20] proved the boundedness of the
maximal operator.

In 2004, Diening [19] proved Sobolev’s theorem for the potential Iβ on the
whole space R

n assuming that p(x) is constant at infinity (p(x) is always con-
stant outside some large ball) and satisfies the same logarithmic condition as
in [29]. Another progress for unbounded domains is the result of Cruz-Uribe
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et al. [18] on the boundedness of the maximal operator in unbounded domains
for exponents p(x) satisfying the logarithmic smoothness condition both locally
and at infinity.

In [24], Kokilashvili and Samko prove Sobolev-type theorem for the poten-

tial Iβ(·) from the space Lp(·)(Rn) into the weighted space L
q(·)
ω (Rn) with the

power weight ω fixed to infinity, under the logarithmic condition for p(x) sat-
isfied locally and at infinity, not supposing that p(x) is constant at infinity but
assuming that p(x) takes its minimal value at infinity.

Motivated by the above results, we are to investigate mapping properties of
the fractional Hardy-type operators Hβ(·) and H ∗

β(·) within the framework of

the Herz-Morrey spaces with variable exponent.
Throughout this paper, we will denote by |S| the Lebesgue measure and

by χ
S
the characteristic function for a measurable set S ⊂ R

n; B(x, r) is the
ball centered at x and of radius r; B0 = B(0, 1). C denotes a constant that is
independent of the main parameters involved but whose value may differ from
line to line. For any index 1 < q(x) < ∞, we denote by q′(x) its conjugate

index, namely, q′(x) = q(x)
q(x)−1 . For A ∼ D, we mean that there is a constant

C > 0 such thatC−1D ≤ A ≤ CD.

2. Preliminaries

In this section, we give the definition of Lebesgue and Herz-Morrey spaces
with variable exponent, and give basic properties and useful lemmas.

2.1. Function spaces with variable exponent

Let Ω be a measurable set in R
n with |Ω| > 0. We first define Lebesgue

spaces with variable exponent.

Definition 2.1. Let q(·) : Ω → [1,∞) be a measurable function.

(I)) The Lebesgue spaces with variable exponent Lq(·)(Ω) is defined by

Lq(·)(Ω) = {f is measurable function : Fq(f/η) < ∞ for some constant η > 0},

where Fq(f) :=
∫

Ω |f(x)|q(x)dx. The Lebesgue space Lq(·)(Ω) is a Ba-
nach function space with respect to the norm

‖f‖Lq(·)(Ω) = inf
{

η > 0 : Fq(f/η) =

∫

Ω

( |f(x)|

η

)q(x)

dx ≤ 1
}

.

(II)) The space L
q(·)
loc (Ω) is defined by

L
q(·)
loc (Ω) = {f is measurable : f ∈ Lq(·)(Ω0) for all compact subsets Ω0 ⊂ Ω}.

III) The weighted Lebesgue space L
q(·)
ω (Ω) is defined by as the set of all

measurable functions for which

‖f‖
L

q(·)
ω (Ω)

= ‖ωf‖Lq(·)(Ω) < ∞.
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Next we define some classes of variable exponent functions. Given a function
f ∈ L1

loc(R
n), the Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

r−n

∫

B(x,r)

|f(y)|dy,

where B(x, r) = {y ∈ R
n : |x− y| < r}.

Definition 2.2. Given a measurable function q(·) defined on R
n, we write

q− := ess inf
x∈Rn

q(x), q+ := ess sup
x∈Rn

q(x).

(I) q′− = ess inf
x∈Rn

q′(x) = q+
q+−1 , q′+ = ess sup

x∈Rn

q′(x) = q−
q−−1 .

(II) Denote by P(Rn) the set of all measurable functions q(·) : Rn →
(1,∞) such that

1 < q− ≤ q(x) ≤ q+ < ∞, x ∈ R
n.

(III) The set B(Rn) consists of all measurable functions q(·) ∈ P(Rn)
satisfying that the Hardy-Littlewood maximal operator M is bounded
on Lq(·)(Rn).

(IV) The set C
log
0 (Rn) consists of all locally log-Hölder continuous func-

tions q(·) : Rn → (0,∞) satisfies the condition

(2.1) |q(x)− q(y)| ≤
−C

ln(|x − y|)
, |x− y| ≤ 1/2, x, y ∈ R

n.

(V) The set C
log
∞ (Rn) consists of all log-Hölder continuous at infinity

functions q(·) : Rn → (0,∞) satisfies the condition

(2.2) |q(x) − q(∞)| ≤
C∞

ln(e + |x|)
, x ∈ R

n,

where q(∞) = lim|x|→∞ q(x).

(VI) Denote by C log(Rn) := C
log
0 (Rn)∩C log

∞ (Rn) the set of all globally
log-Hölder continuous functions q(·) : Rn → (0,∞).

Remark 1. The C log
∞ (Rn) condition is equivalent to the uniform continuity

condition

(2.3) |q(x) − q(y)| ≤
C

ln(e+ |x|)
, |y| ≥ |x|, x, y ∈ R

n.

The C
log
∞ (Rn) condition was originally defined in this form in [18].

Next we define the Herz-Morrey spaces with variable exponent. Let Bk =
B(0, 2k) = {x ∈ R

n : |x| ≤ 2k}, Ak = Bk \Bk−1 and χ
k
= χ

Ak
for k ∈ Z.

Definition 2.3. Suppose that α ∈ R, 0 ≤ λ < ∞, 0 < p < ∞, q(·) ∈ P(Rn).

The Herz-Morrey space with variable exponent MK̇α,λ
p,q(·)(R

n) is defined by

MK̇α,λ
p,q(·)(R

n) =
{

f ∈ L
q(·)
loc (R

n\{0}) : ‖f‖MK̇α,λ

p,q(·)
(Rn) < ∞

}

,
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where

‖f‖MK̇α,λ

p,q(·)
(Rn) = sup

k0∈Z

2−k0λ
(

k0
∑

k=−∞

2kαp‖fχ
k
‖p
L

q(·)
(Rn)

)
1
p

.

Compare the variable Herz-Morrey space MK̇α,λ
p,q(·)(R

n) with the variable

Herz space K̇α,p
q(·)(R

n), where

K̇α,p
q(·)(R

n) =
{

f ∈ L
q(·)
loc (R

n\{0}) :

∞
∑

k=−∞

2kαp‖fχ
k
‖p
Lq(·)(Rn)

< ∞
}

,

Obviously, MK̇α,0
p,q(·)(R

n) = K̇α,p
q(·)(R

n).

In 2012, Almeida and Drihem [1] discuss the boundedness of a wide class of

sublinear operators on Herz spaces K
α(·),p
q(·) (Rn) and K̇

α(·),p
q(·) (Rn) with variable

exponent α(·) and q(·). In this paper, the author only considers Herz-Morrey

spaceMK̇
α(·),λ
p,q(·) (R

n) with variable exponent q(·) but fixed α ∈ R and p ∈ (0,∞).

However, for the case of the exponent α(·) is variable as well, which can be found
in the furthermore work for the author.

2.2. Auxiliary propositions and lemmas

In this part we state some auxiliary propositions and lemmas which will be
needed for proving our main theorems. And we only describe partial results
we need.

Proposition 2.1. Let q(·) ∈ P(Rn).

(I) If q(·) ∈ C log(Rn), then we have q(·) ∈ B(Rn).
(II) q(·) ∈ B(Rn) if and only if q′(·) ∈ B(Rn).

The first part in Proposition 2.1 is independently due to Cruz-Uribe et al. [18]
and to Nekvinda [27], respectively. The second of Proposition 2.1 belongs to
Diening [21] (see Theorem 8.1 or Theorem 1.2 in [17]).

Remark 2. Since

|q′(x)− q′(y)| ≤
|q(x) − q(y)|

(q− − 1)2
,

it follows at once that if q(·) ∈ C log(Rn), then so does q′(·)—i.e., if the condition

hold, then M is bounded on Lq(·)(Rn) and Lq′(·)(Rn). Furthermore, Diening
has proved general results on Musielak-Orlicz spaces.

The order β(x) of the fractional Hardy-type operators in Definition 1.1 is
not assumed to be continuous. We assume that it is a measurable function on
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R
n satisfying the following assumptions

(2.4)



















β0 := ess inf
x∈Rn

β(x) > 0,

ess sup
x∈Rn

p(x)β(x) < n,

ess sup
x∈Rn

p(∞)β(x) < n.

In order to prove our main results, we need the Sobolev type theorem for
the space Rn which was proved in ref. [24] for the exponents p(x) not necessar-
ily constant in a neigbourhood of infinity, but with some extra power weight
fixed to infinity and under the assumption that p(x) takes its minimal value at
infinity.

Proposition 2.2. Suppose that p(·) ∈ C log(Rn) ∩ P(Rn). Let

(2.5) 1 < p(∞) ≤ p(x) ≤ p+ < ∞,

and β(x) meet condition (2.4). Then the following weighted Sobolev-type esti-

mate is valid for the operator Iβ(·):
∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(f)

∥

∥

∥

Lq(·)(Rn)
≤ C‖f‖Lp(·)(Rn),

where

1

q(x)
=

1

p(x)
−

β(x)

n

is the Sobolev exponent and

(2.6) γ(x) = C∞β(x)
(

1−
β(x)

n

)

≤
n

4
C∞,

C∞ being the Dini-Lipschitz constant from (2.2) which q(·) is replaced by p(·).

Remark 3. (i) If β(x) satisfies the condition of type (2.2): |β(x) − β(∞)| ≤
C∞

ln(e+|x|) (x ∈ R
n), then the weight (1 + |x|)−γ(x) is equivalent to the weight

(1 + |x|)−γ(∞).
(ii) One can also treat operator (1.1) with β(x) replaced by β(y). In the case

of potentials over bounded domains Ω such potentials differ unessentially, if the
function β(x) satisfies the smoothness logarithmic condition as (2.1), since

C1|x− y|n−β(y) ≤ |x− y|n−β(x) ≤ C2|x− y|n−β(y)

in this case (see [29], p. 277).
(iii) Under the assumptions of Proposition 2.2, similar conclusion is also

valid for the fractional maximal operator

Mβ(·)(f)(x) = sup
r>0

1

|B(x, r)|n−β(x)

∫

B(x,r)

|f(y)|dy.
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(iv) When p(·) ∈ P(Rn), the assumption that p(·) ∈ C log(Rn) is equivalent
to assuming 1/p(·) ∈ C log(Rn), since

∣

∣

∣

p(x)− p(y)

(p+)2

∣

∣

∣
≤

∣

∣

∣

1

p(x)
−

1

p(y)

∣

∣

∣
=

∣

∣

∣

p(x)− p(y)

p(x)p(y)

∣

∣

∣
≤

∣

∣

∣

p(x)− p(y)

(p−)2

∣

∣

∣
.

And further, 1/p(·) ∈ C log(Rn) implies that 1/q(·) ∈ C log(Rn) as well.

The next lemma known as the generalized Hölder’s inequality on Lebesgue
spaces with variable exponent, and the proof can be found in [15].

Lemma 2.1 (Generalized Hölder’s inequality). Suppose that q(·) ∈ P(Rn),

then for any f ∈ Lq(·)(Rn) and any g ∈ Lq′(·)(Rn), we have
∫

Rn

|f(x)g(x)|dx ≤ Cq‖f‖Lq(·)(Rn)‖g‖Lq′(·)(Rn),

where Cq = 1 + 1/q− − 1/q+.

The following lemma can be found in [23].

Lemma 2.2. Let q(·) ∈ B(Rn).

(I) Then there exist positive constants δ ∈ (0, 1) and C > 0 such that

‖χS‖Lq(·)(Rn)

‖χB‖Lq(·)(Rn)

≤ C

(

|S|

|B|

)δ

for all balls B in R
n and all measurable subsets S ⊂ B.

(II) Then there exists a positive constant C > 0 such that

C−1 ≤
1

|B|
‖χB‖Lq(·)(Rn)‖χB‖Lq′(·)(Rn) ≤ C

for all balls B in R
n.

Remark 4. (i) If q
1
(·), q

2
(·) ∈ C log(Rn)∩P(Rn), then we see that q′

1
(·), q

2
(·) ∈

B(Rn). Hence we can take positive constants 0 < δ1 < 1/(q′
1
)+, 0 < δ2 <

1/(q2)+ such that

(2.7)
‖χS‖Lq′1(·)(Rn)

‖χB‖Lq′
1
(·)(Rn)

≤ C

(

|S|

|B|

)δ1

,
‖χS‖Lq2(·)(Rn)

‖χB‖Lq2(·)(Rn)

≤ C

(

|S|

|B|

)δ2

hold for all balls B in R
n and all measurable subsets S ⊂ B (see [7, 23]).

(ii) On the other hand, Kopaliani [25] has proved the conclusion: If the
exponent q(·) ∈ P(Rn) equals to a constant outside some large ball, then
q(·) ∈ B(Rn) if and only if q(·) satisfies the Muckenhoupt type condition

sup
Q:cube

1

|Q|
‖χ

Q
‖Lq(·)(Rn)‖χQ

‖Lq′(·)(Rn) < ∞.
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3. Main results and their proofs

Our main result can be stated as follows.

Theorem 3.1. Suppose that q
1
(·) ∈ C log(Rn) ∩ P(Rn) satisfies condition

(2.5), and β(x) meet condition (2.4) which p(·) is replaced by q
1
(·). Define the

variable exponent q
2
(·) by

1

q
2
(x)

=
1

q
1
(x)

−
β(x)

n
.

Let 0 < p1 ≤ p2 < ∞, λ ≥ 0, α < λ + nδ1, where δ1 ∈ (0, 1/(q′1)+) is the

constant appearing in (2.7). Then

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

MK̇α,λ

p
2
,q

2
(·)

(Rn)
≤ C‖f‖MK̇α,λ

p
1
,q

1
(·)

(Rn),

where γ(x) is defined as in (2.6), and C∞ is the Dini-Lipschitz constant from

(2.2) which q
1
(·) instead of q(·).

Proof. For any f ∈ MK̇α,λ
p,q(·)(R

n), if we denote fj := f · χj = f · χAj
for each

j ∈ Z, then we can write

f(x) =

∞
∑

j=−∞

f(x) · χj(x) =

∞
∑

j=−∞

fj(x).

By (1.0a) and Lemma 2.1, we have

|Hβ(·)(f)(x) · χk
(x)| ≤

1

|x|n−β(x)

∫

|t|<|x|

|f(t)|dt · χ
k
(x)

≤
1

|x|n−β(x)

∫

Bk

|f(t)|dt · χ
k
(x)

≤ C2
−kn

|x|β(x)
(

k
∑

j=−∞

∫

Aj

|f(t)|dt
)

· χ
k
(x)(3.1)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L

q1 (·)
(Rn)

‖χ
j
‖
L

q′
1
(·)

(Rn)
· |x|β(x)χ

k
(x).

For Proposition 2.2, we note that

Iβ(·)(χBk
)(x) ≥ Iβ(·)(χBk

)(x) · χ
Bk

(x) =

∫

Bk

1

|x− y|n−β(x)
dy · χ

Bk
(x)

≥ C|x|β(x) · χ
Bk

(x) ≥ C|x|β(x) · χ
k
(x).

(3.2)
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Using Proposition 2.2, Lemma 2.2, (2.7), (3.1) and (3.2), we have

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

L
q
2
(·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L

q
1
(·)

(Rn)
‖χ

j
‖
L

q′
1
(·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x) · χ

k
(·)

∥

∥

∥

L
q
2
(·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L

q1 (·)
(Rn)

‖χ
j
‖
L

q′
1
(·)

(Rn)

∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(χBk

)
∥

∥

∥

L
q
2
(·)

(Rn)

≤ C2
−kn

k
∑

j=−∞

‖fj‖
L

q
1
(·)

(Rn)
‖χ

j
‖
L

q′
1
(·)

(Rn)
‖χ

Bk
‖
L

q
1
(·)

(Rn)

≤ C2
−kn

‖χ
Bk

‖
L

q
1
(·)

(Rn)

k
∑

j=−∞

‖fj‖
L

q
1
(·)

(Rn)
‖χ

Bj
‖
L

q′
1
(·)

(Rn)

≤ C
k

∑

j=−∞

‖fj‖
L

q
1
(·)

(Rn)

‖χ
Bj
‖
L

q′
1
(·)

(Rn)

‖χ
Bk

‖
L

q′
1
(·)

(Rn)

≤ C
k

∑

j=−∞

2(j−k)nδ1‖fj‖
L

q
1
(·)

(Rn)
.

(3.3)

Because of 0 < p
1
/p

2
≤ 1, then we apply inequality

(3.4)

( ∞
∑

i=−∞

|ai|

)p
1
/p

2

≤

∞
∑

i=−∞

|ai|
p
1
/p

2 ,

and obtain
∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

p1

MK̇α,λ

p
2
,q

2
(·)

(Rn)

= sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp2

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

p
2

Lq2 (·)(Rn)

)p1/p2

≤ sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f) · χk
(·)

∥

∥

∥

p
1

Lq
2
(·)(Rn)

)

.

On the other hand, note the following fact

‖fj‖
L

q1 (·)
(Rn)

= 2−jα
(

2jαp1 ‖fj‖
p1

L
q
1
(·)

(Rn)

)1/p
1

(3.5)

≤ 2−jα

( j
∑

i=−∞

2iαp1 ‖fi‖
p
1

L
q1 (·)

(Rn)

)1/p
1
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= 2j(λ−α)

(

2−jλ
(

j
∑

i=−∞

2iαp1 ‖fi‖
p
1

L
q
1
(·)

(Rn)

)1/p
1

)

≤ C2j(λ−α)‖f‖MK̇α,λ

p
1
,q

1
(·)

(Rn).

Thus, combining (3.3) and (3.5), and using α < λ+ nδ1, it follows that

∥

∥

∥
(1 + |x|)−γ(x)

Hβ(·)(f)
∥

∥

∥

p
1

MK̇α,λ

p
2
,q

2
(·)

(Rn)

≤ C sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1

(

k
∑

j=−∞

2(j−k)nδ1‖fj‖
L

q
1
(·)

(Rn)

)p1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1

(

k
∑

j=−∞

2(j−k)nδ12j(λ−α)
)p

1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1

(

k
∑

j=−∞

2(j−k)(nδ1+λ−α)
)p

1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
.

Consequently, the proof of Theorem 3.1 is completed. �

Theorem 3.2. Suppose that q
1
(·) ∈ C log(Rn)∩P(Rn) satisfies condition (2.5),

and β(x) meet condition (2.4) which q1(·) instead of p(·). Define the variable

exponent q
2
(·) by

1

q2(x)
=

1

q1(x)
−

β(x)

n
.

Let 0 < p
1
≤ p

2
< ∞, λ ≥ 0, α > λ − nδ2, where δ2 ∈ (0, 1/(q2)+) is the

constant appearing in (2.7). Then

∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f)

∥

∥

∥

MK̇α,λ

p
2
,q

2
(·)

(Rn)
≤ C‖f‖MK̇α,λ

p1 ,q1 (·)
(Rn),

where γ(x) is defined as in (2.6), and the Dini-Lipschitz constant from condition

(2.2) which q(·) is replaced by q
1
(·).

Proof. For simplicity, for any f ∈ MK̇α,λ
p,q(·)(R

n), we write

f(x) =
∞
∑

j=−∞

f(x) · χj(x) =
∞
∑

j=−∞

fj(x).
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By (1.0b) and Lemma 2.1, we have

∣

∣

∣
(1 + |x|)−γ(x)

H
∗
β(·)(f)(x) · χk

(x)
∣

∣

∣

≤

∫

|t|≥|x|

|f(t)|

|t|n−β(x)
dt · (1 + |x|)−γ(x)χ

k
(x)

≤ C

∫

Rn\Bk

|f(t)||x|β(x)−ndt · (1 + |x|)−γ(x)χ
k
(x)

≤ C
∞
∑

j=k+1

∫

Aj

|f(t)||x|β(x)−n(1 + |x|)−γ(x)dt · χ
k
(x)

≤ C

∞
∑

j=k+1

‖fj‖
L

q1 (·)
(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x)−nχ

j
(·)

∥

∥

∥

L
q′
1
(·)

(Rn)
· χ

k
(x).

(3.6)

Similar to (3.2), we give

Iβ(·)(χBj
)(x) ≥ Iβ(·)(χBj

)(x) · χ
Bj
(x)

=

∫

Bj

1

|x− y|n−β(x)
dy · χ

Bj
(x)

≥ C|x|β(x) · χ
Bj
(x) ≥ C|x|β(x) · χ

j
(x).

(3.7)

Since q
1
(·) ∈ C log(Rn) ∩ P(Rn) and β(x) satisfy condition (2.4) and (2.5)

which q1(·) instead of p(·). So, applying Proposition 2.2, Lemma 2.2, (2.7),
(3.6) and (3.7), we obtain

∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f) · χk

(·)
∥

∥

∥

L
q
2
(·)

(Rn)

≤ C
∞
∑

j=k+1

‖fj‖
L

q1 (·)
(Rn)

‖χ
k
‖
L

q2 (·)
(Rn)

∥

∥

∥
(1 + |x|)−γ(x)| · |β(x)−nχ

j
(·)

∥

∥

∥

L
q′
1
(·)

(Rn)

≤ C
∞
∑

j=k+1

‖fj‖
L

q1 (·)
(Rn)

‖χ
k
‖
L

q2 (·)
(Rn)

· 2
−jn

∥

∥

∥
(1 + |x|)−γ(x)Iβ(·)(χBj

)
∥

∥

∥

L
q′
1
(·)

(Rn)

≤ C
∞
∑

j=k+1

‖fj‖
L

q1 (·)
(Rn)

‖χ
Bk

‖
L

q2 (·)
(Rn)

· 2
−jn

‖χ
Bj
‖
L

q′
2
(·)

(Rn)

≤ C
∞
∑

j=k+1

‖fj‖
L

q
1
(·)

(Rn)

‖χ
Bk

‖
L

q
2
(·)

(Rn)

‖χ
Bj
‖
L

q
2
(·)

(Rn)

≤ C
∞
∑

j=k+1

2(k−j)nδ2‖fj‖
L

q
1
(·)

(Rn)
.

(3.8)
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Because of 0 < p1/p2 ≤ 1, therefore, applying (3.4), and combining (3.5)
and (3.8), and using α > λ− nδ2, it follows that

∥

∥

∥
(1 + |x|)−γ(x)

H
∗
β(·)(f)

∥

∥

∥

p
1

MK̇α,λ

p
2
,q

2
(·)

(Rn)

≤ C sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1

(

∞
∑

j=k+1

2(k−j)nδ2‖fj‖
L

q
1
(·)

(Rn)

)p
1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kαp1

(

∞
∑

j=k+1

2(k−j)nδ22j(λ−α)
)p

1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1

(

∞
∑

j=k+1

2(k−j)(nδ2+α−λ)
)p

1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
sup
k0∈Z

2−k0λp1

( k0
∑

k=−∞

2kλp1

)

≤ C‖f‖p1

MK̇α,λ

p
1
,q

1
(·)

(Rn)
.

Consequently, the proof of Theorem 3.2 is completed. �

In particular, when γ(x) = 0 and β(·) is constant exponent, the main results
above are proved by Zhang and Wu in [9].
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[22] L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, and T. Shimomura, Maximal functions

in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math.
34 (2009), no. 2, 503–522.

[23] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima
Math. J. 40 (2010), no. 3, 343–355.

[24] V. Kokilashvili and S. Samko, On Sobolev theorem for Riesz type potentials in Lebesgue

spaces with variable exponent, Z. Anal. Anwendungen 22 (2003), no. 4, 899–910.
[25] T. Kopaliani, Infimal convolution and Muckenhoupt Ap(·) condition in variable Lp

spaces, Arch. Math. 89 (2007), no. 2, 185–192.
[26] A. Lerner, On some questions related to the maximal operator on variable Lp spaces,

Trans. Amer. Math. Soc. 362 (2010), no. 8, 4229–4242.

[27] A. Nekvinda, Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl.
7 (2004), no. 2, 255–265.
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