• Title/Summary/Keyword: Pulse output

Search Result 1,166, Processing Time 0.028 seconds

Power Cell-based Pulsed Power Modulator with Fast Rise Times (빠른 상승 시간을 갖는 파워 셀 기반 펄스 파워 모듈레이터)

  • Lee, Seung-Hee;Song, Seung-Ho;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • This paper describes the design of a power cell-based pulsed power modulator with fast rise times. The pulse-generating section of the pulse power modulator is a series stack of power cells. Each power cell is composed of a storage capacitor, a pulse switch, and a bypass diode. When the pulse switches are turned on, the capacitors are connected in series and the sum of voltages is applied to the load. For output pulses with fast rise times, an IGBT with fast turn-on characteristics is adopted as a pulse switch and the optimized gate driving method is used. Pspice simulation is performed to account for the gate driving method. A 10 kV, 12-power cell-based pulsed power modulator is tested under resistive load and plasma reactor load. The rise times of output pulses less than 20 ns are confirmed, showing that the pulsed power modulator can be effectively applied to pulsed power applications with fast rise times.

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter (LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성)

  • Lee, Hee-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.286-291
    • /
    • 2015
  • LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC (Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석)

  • Jae-Myeong, Kim;Jae-Jung, Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

A Study on the Pulse Generator using PFN (PFN을 이용한 펄스발생기의 연구)

  • Lee, B.H.;Joung, K.M.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1773-1775
    • /
    • 1998
  • This paper deals with the pulse generator using PFN(Pulse Forming Network), and its operation characteristics and application. Two kinds of pulse generator were composed of the best appropriate condition circuit. The output current of the one pulse generator has the rise time of 28 ns and the pulse duration of $7{\mu}s$. The other pulse generator has high current of about 2kA. By use of the former generator with rapid rise time, the impulse impedance characteristic of ground electrodes was investigated with measuring the ground potential rise when the pulse current was injected into the ground electrode.

  • PDF

The Impulse Output Characteristics using Cascading Method of Compact Transformer (소형트랜스의 Cascading 방식을 적용한 임펄스 출력특성)

  • Joung, Jong-Han;Kim, Whi-Young;Hong, Jung-Hwan;Park, Koo-Ryul;Kim, Hee-Je;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1865-1867
    • /
    • 2000
  • The pulse power system has been widely used to many applications. such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, ozon generator. etc. A pulse energy efficiency for load depend on the rising time, peak value, pulse duration, impedance matching. etc. The pulse generator generally required for short pulse duration, high peak value was forced to consider its size and economy. In this study, developing a compact pulse generator that applied for Cascading method to be made of two pulse transformer, we compared cascading voltage with no cascading one by applying the pulse energy to load.

  • PDF

Design of the Adaptive Learning Circuit by Enploying the MFSFET (MFSFET 소자를 이용한 Adaptive Learning Curcuit 의 설계)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.1-12
    • /
    • 2001
  • The adaptive learning circuit is designed on the basis of modeling of MFSFET (Metal-Ferroelectric-Semiconductor FET) and the numerical results are analyzed. The output frequency of the adaptive learning circuit is inversely proportional to the source-drain resistance of MFSFET and the capacitance of the circuit. The saturated drain current with input pulse number is analogous to the ferroelectric polarization reversal. It indicates that the ferroelectric polarization plays an important role in the drain current control of MFSFET. The output frequency modulation of the adaptive learning circuit is investigated by analyzing the source-drain resistance of MFSFET as functions of input pulse numbers in the adaptive learning circuit and the dimensionality factor of the ferroelectric thin film. From the results, the frequency modulation characteristic of the adaptive learning circuit are confirmed. In other words, adaptive learning characteristics which means a gradual frequency change of output pulse with the progress of input pulse are confirmed. Consequently it is shown that our circuit can be used effectively in the neuron synapses of nueral networks.

  • PDF

The high repetition operating characteristics of pulsed Nd:YAG laser by parallel mesh and alternating charge-discharge system (병렬 메쉬 및 교번 충.방전 방식에 의한 펄스형 Nd:YAG 레이저의 고반복 동작특성에 관한 연구)

  • Park, K.R.;Kim, B.G.;Hong, J.H.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1060-1062
    • /
    • 1999
  • Pulsed Nd:YAG laser is used widely for materials processing and instrumentation. It is very important to control the laser energy density in materials processing by a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this study, the alternating charge-discharge system was designed to adjust a pulse repetition rate. And the parallel mesh is added to increase laser output power. This system is controlled by one chip microprocessor and allows to replace an expensive condenser for high frequency to a cheap condenser for low frequency. In addition, we have investigated the current pulse shape of flashlamp and the operating characteristics of a pulsed Nd:YAG laser. As a result, it is found that the laser output of the power supply using the parallel mesh and the alternating charge-discharge system is not less than that of typical power supply. As the pulse repetition rate rises from 10pps to 110pps by the step of 20pps at 1000V and 1200V, it is found that the laser efficiency decreases but the laser output power increases about 5W at each step.

  • PDF

Adaptive Learning Circuit For Applying Neural Network (뉴럴 네트워크의 적용을 위한 적응형 학습회로)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.534-540
    • /
    • 2008
  • The adaptive learning circuit is designed on the basis of modeling of MFSFET (Metal-Ferroelectric-Semiconductor FET) and the numerical results is analyzed. The output frequency of the adaptive learning circuit is inversely proportional to the source-drain resistance of MFSFET and the capacitance of the circuit. The saturated drain current with input pulse number is analogous to the ferroelectric polarization reversal. It indicates that the ferroelectric polarization plays an important role in the drain current control of MFSFET. The output frequency modulation of the adaptive learning circuit is investigated by analyzing the source-drain resistance of MFSFET as functions of input pulse numbers in the adaptive learning circuit and the dimensionality factor of the ferroelectric thin film. From the results, adaptive learning characteristics which means a gradual frequency change of output pulse with the progress of input pulse, are confirmed. Consequently it is shown that our circuit can be used effectively in the neuron synapses of neural networks.

Generation of a High Voltage Pulse of 50 ns Pulse Duration using a Helical Blumlein Pulse Forming Line (나선형 블룸라인 PFL을 이용한 50 ns 펄스폭의 고전압 펄스 발생)

  • Roh, Youngsu;Jin, Yun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.786-791
    • /
    • 2013
  • A high voltage pulse generator based on the Blumlein pulse forming line (PFL) was fabricated to produce a voltage pulse whose peak value is ~300 kV and pulse duration is ~50 ns. Three cylindrical electrodes, such as inner, middle, and outer electrodes, are concentrically placed to make a compact PFL. To increase the pulse duration of the output pulse without any change of the size of the generator, the middle electrode is replaced by a helical strip electrode. To determine the radius of the helical electrode, the impedance of the helical Blumlein PFL is calculated using an approximate formula where the dispersive property of the helical Blumlein PFL is not considered. The dependence of the impedance on the frequency is computed by a commercial program. The number of turns in the helical electrode is decided to provide a demanded pulse duration. The experimental result shows that the helical Blumlein PFL is capable of making a high voltage pulse of ~50 ns pulse duration.