DOI QR코드

DOI QR Code

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter

LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성

  • Lee, Hee-Chang (Department of Mechatronics Engineering, Tongmyomg University)
  • Received : 2015.02.11
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].

Nd:YAG 레이저의 출력조절을 위하여 LLC 공진 컨버터를 사용하였다. ZVS(Zero Voltage Switching) 방식을 LLC 공진형 컨버터에 적용함으로써 스위칭 손실을 최소화하였다. 금속박막의 점용접과 같은 레이저가공에 있어서 단일 펄스에 대한 출력에너지가 가공특성을 결정하므로, 적절한 목표출력으로 단일펄스 당 50 [J]로 결정하였다. 따라서 레이저 출력은 출력전류를 변화시켜가면서 측정하고 분석하였다. 이 때, 전류는 커패시터의 충전전압의 크기에 따라 변한다. 이러한 결과로부터 충전 커패시터의 용량 12,000 [${\mu}F$], 반복율이 1 [Hz]일 때, 방전전압 620 [V], 방전전류 861 [A]에서 58.2 [J]의 레이저빔 최대 출력을 얻음으로써 전기에너지 입력에 대한 레이저빔 출력에너지 변환효율은 2.52%를 달성하였다.

Keywords

References

  1. Albright. C, Laser Welding, Machining and Materials Processing, IFS Publication, pp. 41-43, 1985.
  2. S. D. Song, The Medical Application of Laser, Dasung publishing company, 1998 (in Korean).
  3. W. Koechner, Solid-State Laser Engineering, Springer Verlag, New York, Heidelberg, pp. 51-52, 341-343, 1996.
  4. Y. Wei, G. Zhang, C. Huang, L. Huang, and M. Wei, "High power single wavelength Nd:YAG laser," Optics & Laser Technology, vol. 38, no. 3, pp. 173-176, 2006. https://doi.org/10.1016/j.optlastec.2004.11.015
  5. M. M. Hanon, E. Akman, B. Genc Oztoprak, M. Gunes, Z. A. Taha, K. I. Hajim, E. Kacar, O. Gundogdu, and A. Demiret, "Experimental and theoretical investigations of the drilling of alumina ceramic using Nd:YAG laser," Optics & Laser Technology, vol. 44, no. 4, pp. 913-922, 2012. https://doi.org/10.1016/j.optlastec.2011.11.010
  6. A. Sharma and V. Yadava, "Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile," Optics & Laser Technology, vol. 44, no. 1, pp. 159-168, 2012. https://doi.org/10.1016/j.optlastec.2011.06.012
  7. Ministry of Industry and Energy, Directions and Strategies, Development of Electronic Medical Devices Industry, 1998 (in Korean).
  8. H. S. Jeong, Application with the Basis of the Laser, Iljinsa, 2012 (in Korean).
  9. H. J. Kim, J. Y. Choi, J. H. Kim, J. T. Hong, H. W. Seo, D. G. Lee, K. J. Lee, and M. K. Son, "Proposal of optimal process parameters for poly-methyl-meth-acryl plastic adhesion using a pulsed Nd:YAG laser," Optical Engineering, vol. 48, no. 5 pp. 084301-1-7, 2009. https://doi.org/10.1117/1.3204233
  10. Alex D. McLeod, Design Consideration for Triggering of Flashlamps, PerkinElmer, 1998.
  11. "App Note 500-Calculating Capacitor Charge Time, Handbook" TDK-Lambda, 2009.
  12. S. A. Rahman, Resonant LLC Converter : Operation and Design, Infineon, 2012.
  13. B. Y. R. Chen and F. Lee, "Integrated magnetic for LLC resonant converter," Proceedings of the IEEE Applied Power Electronics Conference, pp. 346-351, 2002.
  14. UCC25600 Datasheet, Texas Instruments, 2011.